Unlocking photocatalytic NO removal potential in an S‐type UiO‐66‐NH2/ZnS(en)0.5 heterostructure

光催化 异质结 X射线光电子能谱 光致发光 材料科学 吸附 氧气 氧化物 化学工程 光化学 纳米技术 化学 光电子学 工程类 物理化学 催化作用 有机化学 冶金 生物化学
作者
Wenrui Dai,Chenxiang Wang,Yi Wang,Jieting Sun,Hang Ruan,Yuhua Xue,Shuning Xiao
出处
期刊:Interdisciplinary materials [Wiley]
卷期号:3 (3): 400-413 被引量:2
标识
DOI:10.1002/idm2.12160
摘要

Abstract The contamination of nitric oxide presents a significant environmental challenge, necessitating the development of efficient photocatalysts for remediation. Conventional heterojunctions encounter obstacles such as large contact barriers, sluggish charge transport, and compromised redox capacity. Here, we introduce an innovative S‐type heterostructure photocatalyst, UiO‐66‐NH 2 /ZnS(en) 0.5 , designed specifically to overcome these challenges. The synthesis, employing a unique microwave solvothermal method, strategically aligns the lowest unoccupied molecular orbital of UiO‐66‐NH 2 with the highest occupied molecular orbital of ZnS(en) 0.5 , fostering the formation of a stepped heterojunction. The resulting intimate interface contact generates a built‐in electric field, facilitating charge separation and migration, as evidenced by time‐resolved photoluminescence spectroscopy and photoelectrochemical tests. The abundant active sites in the porous UiO‐66‐NH 2 counterpart provide adsorption and activation sites for nitrogen monoxide (NO) oxidation. Performance evaluation reveals exceptional photocatalytic NO removal, achieving 70% efficiency and 99% selectivity toward nitrates under simulated solar illumination. Evidence from X‐ray photoelectron spectroscopy and trapping experiments supports the effectiveness of the S‐type heterostructure, showcasing refined reactive oxygen species, particularly superoxide. Thus, this study introduces a new perspective on advanced NO oxidation and unlocks the potential of S‐scheme heterojunctions to refine reactive oxygen species for NO remediation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刘歌完成签到 ,获得积分10
刚刚
阿巡完成签到,获得积分10
刚刚
Chen完成签到,获得积分10
2秒前
LSH970829发布了新的文献求助10
2秒前
哈哈哈完成签到 ,获得积分10
3秒前
汤姆完成签到,获得积分10
3秒前
5秒前
5秒前
翠翠完成签到,获得积分10
6秒前
6秒前
LSH970829完成签到,获得积分10
7秒前
Lyg完成签到,获得积分20
8秒前
坚强的樱发布了新的文献求助10
8秒前
baodingning完成签到,获得积分10
9秒前
9秒前
公茂源发布了新的文献求助30
9秒前
热爱完成签到,获得积分10
10秒前
11秒前
叫滚滚发布了新的文献求助10
12秒前
星瑆心完成签到,获得积分10
12秒前
啦啦啦啦啦完成签到,获得积分10
13秒前
Lyg发布了新的文献求助10
13秒前
Dksido完成签到,获得积分10
14秒前
兰博基尼奥完成签到,获得积分10
14秒前
热情芷荷发布了新的文献求助10
16秒前
random完成签到,获得积分10
17秒前
17秒前
果果瑞宁完成签到,获得积分10
17秒前
18秒前
机智小虾米完成签到,获得积分20
18秒前
goldenfleece完成签到,获得积分10
19秒前
科研通AI2S应助学者采纳,获得10
19秒前
小杨完成签到,获得积分10
20秒前
sutharsons应助科研通管家采纳,获得30
21秒前
21秒前
Ava应助科研通管家采纳,获得10
21秒前
慕青应助科研通管家采纳,获得10
21秒前
所所应助科研通管家采纳,获得10
21秒前
在水一方应助科研通管家采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808