Optimizing Traffic Flow With Reinforcement Learning: A Study on Traffic Light Management

强化学习 流量(计算机网络) 交通信号灯 运输工程 计算机科学 模拟 工程类 人工智能 计算机网络 实时计算
作者
Amal Merbah,Jalel Ben‐Othman
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:2
标识
DOI:10.1109/tits.2024.3351471
摘要

The non-adaptive management of traffic lights has proven inefficient for a number of drawbacks. They mainly impinge on CO2 emissions, fuel consumption, traffic waiting time, and heavy traffic. In this study, we propose a traffic signal control system that combines the accuracy of mathematical modeling with the real-time and adaptation features of deep learning (DL) by basing the DL configuration on a mathematical model of the interaction between the environment and the intersection as a Markov decision process (MDP) while taking structural and safety issues into consideration. As a resolution method, we suggest in this study a policy iteration (PI) method, which gives the best policy to follow so as to choose the action that determines the phase duration. These phases minimize the reward, which is the average waiting time (AWT) for all vehicles crossing the intersection. The PI has demonstrated greater efficiency compared to management systems based on fixed durations in various traffic situations. Instead of triggering the PI system for each new situation encountered and minimizing the processing time, the PI will act as a learning method for the DL program. We build a learning database by storing several situations represented by the variables: input flow, latest switching dates, output flows, traffic light states, and queue lengths, with their respective solutions returned by PI as the policy for selecting next switching dates. Due to this configuration, DL has been able to respond optimally and in real-time to different levels of throughput: low, medium, and high.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
偶有鸟声完成签到 ,获得积分10
刚刚
池暮江吟春应助lym采纳,获得10
1秒前
独自面对完成签到,获得积分10
2秒前
2秒前
3秒前
xzh完成签到,获得积分10
3秒前
kiki完成签到,获得积分10
4秒前
pan完成签到,获得积分10
5秒前
洁净的嘉熙完成签到,获得积分10
5秒前
琪琪的给琪琪的的求助进行了留言
6秒前
6秒前
WJ1989完成签到,获得积分10
6秒前
所所应助upp采纳,获得10
7秒前
7秒前
楠薏完成签到,获得积分10
8秒前
顺利毕业完成签到,获得积分10
8秒前
ccc完成签到,获得积分10
8秒前
8秒前
王永详完成签到,获得积分10
9秒前
zhangyida完成签到,获得积分10
9秒前
bkagyin应助GuoZheng采纳,获得10
9秒前
陽15完成签到,获得积分20
9秒前
asd关闭了asd文献求助
10秒前
hlm完成签到,获得积分10
10秒前
111完成签到 ,获得积分10
11秒前
wo_qq111完成签到 ,获得积分10
11秒前
11秒前
Daisy完成签到 ,获得积分10
11秒前
boltos发布了新的文献求助10
11秒前
pb完成签到,获得积分10
12秒前
12秒前
12秒前
宇文雅琴完成签到,获得积分10
12秒前
翠甜翠甜大西瓜完成签到 ,获得积分10
12秒前
鲨鱼也蛀牙完成签到,获得积分10
12秒前
852应助刘哈哈采纳,获得10
13秒前
小二郎应助digger2023采纳,获得10
14秒前
14秒前
Bigheart贝卡斯完成签到,获得积分10
14秒前
不懈奋进应助hlm采纳,获得30
14秒前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068596
求助须知:如何正确求助?哪些是违规求助? 2722493
关于积分的说明 7477698
捐赠科研通 2369542
什么是DOI,文献DOI怎么找? 1256421
科研通“疑难数据库(出版商)”最低求助积分说明 609576
版权声明 596835