Optimizing Traffic Flow With Reinforcement Learning: A Study on Traffic Light Management

强化学习 流量(计算机网络) 交通信号灯 运输工程 计算机科学 模拟 工程类 人工智能 计算机网络 实时计算
作者
Amal Merbah,Jalel Ben‐Othman
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:2
标识
DOI:10.1109/tits.2024.3351471
摘要

The non-adaptive management of traffic lights has proven inefficient for a number of drawbacks. They mainly impinge on CO2 emissions, fuel consumption, traffic waiting time, and heavy traffic. In this study, we propose a traffic signal control system that combines the accuracy of mathematical modeling with the real-time and adaptation features of deep learning (DL) by basing the DL configuration on a mathematical model of the interaction between the environment and the intersection as a Markov decision process (MDP) while taking structural and safety issues into consideration. As a resolution method, we suggest in this study a policy iteration (PI) method, which gives the best policy to follow so as to choose the action that determines the phase duration. These phases minimize the reward, which is the average waiting time (AWT) for all vehicles crossing the intersection. The PI has demonstrated greater efficiency compared to management systems based on fixed durations in various traffic situations. Instead of triggering the PI system for each new situation encountered and minimizing the processing time, the PI will act as a learning method for the DL program. We build a learning database by storing several situations represented by the variables: input flow, latest switching dates, output flows, traffic light states, and queue lengths, with their respective solutions returned by PI as the policy for selecting next switching dates. Due to this configuration, DL has been able to respond optimally and in real-time to different levels of throughput: low, medium, and high.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aliothae发布了新的文献求助10
刚刚
Cc完成签到,获得积分10
1秒前
情怀应助zxm采纳,获得10
1秒前
科研通AI5应助闪闪的梦柏采纳,获得10
1秒前
研友_7ZebY8完成签到,获得积分10
2秒前
桐桐应助开花开花采纳,获得10
2秒前
2秒前
iW完成签到,获得积分10
3秒前
3秒前
脑洞疼应助Giroro_roro采纳,获得10
3秒前
芜湖起飞完成签到 ,获得积分10
3秒前
3秒前
Happyness应助慈祥的冬瓜采纳,获得20
3秒前
4秒前
4秒前
一瓶水发布了新的文献求助10
4秒前
5秒前
英俊的铭应助xiaominza采纳,获得10
5秒前
aa完成签到,获得积分10
5秒前
沐晴完成签到,获得积分10
6秒前
6秒前
ccalvintan完成签到,获得积分10
6秒前
6秒前
haorui发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
Elliot_315发布了新的文献求助10
7秒前
7秒前
7秒前
传奇3应助xy采纳,获得10
7秒前
VVV完成签到 ,获得积分10
8秒前
8秒前
Aliothae完成签到,获得积分20
10秒前
10秒前
萝卜发布了新的文献求助10
10秒前
饕餮发布了新的文献求助10
10秒前
ashley325发布了新的文献求助10
11秒前
orixero应助冷静的跌采纳,获得10
11秒前
GGGGGG果果完成签到,获得积分10
11秒前
恋恋青葡萄完成签到,获得积分10
11秒前
ddd发布了新的文献求助10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620