Rail Crack Detection Using Optimal Local Mean Decomposition and Cepstral Information Coefficient Based on Electromagnetic Acoustic Emission Technology

声学 Mel倒谱 分解 声发射 倒谱 材料科学 计算机科学 电子工程 语音识别 工程类 物理 特征提取 人工智能 生态学 生物
作者
Yongqi Chang,Xin Zhang,Yi Shen,Shuzhi Song,Qinghua Song,Jiazhong Cui,Huamin Jie,Zhenyu Zhao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-12 被引量:2
标识
DOI:10.1109/tim.2024.3375420
摘要

Rail crack detection is an essential role in the safety assurance of railway transportation. However, conventional crack detection methodologies suffer from the interference of pronounced wheel–rail rolling noise (WRRN), thereby frequently undermining detection precision. Aiming to address this issue, a novel rail crack detection method based on electromagnetic acoustic emission (EMAE) technology is presented in this article. The proposed method leverages optimal local mean decompose (OLMD) signal reconstruction algorithm, alongside a novel detection index, called cepstral information coefficient (CIC). Designed to obviate the strong WRRN interference, the OLMD algorithm has been optimized via the empirical optimal envelope (EOE), amending inaccuracies in both mean and envelope functions. Subsequently, the original signal is reconstructed by linear superposition of the first product function (PF) component from the OLMD algorithm, enhancing the information pertaining to crack characteristics. The emergent detection index CIC derives from the fusion of the primary dimensions of the gammatone cepstral coefficients (GTCCs) employing a linear transformation matrix, demonstrating exceptional proficiency in crack detection. Finally, the effectiveness and advantages of the proposed method have been demonstrated experimentally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助强大的宁哥哥采纳,获得10
2秒前
老迟到的小蘑菇完成签到,获得积分10
2秒前
上官若男应助infj采纳,获得10
3秒前
3秒前
4秒前
4秒前
6秒前
科研通AI5应助科研通管家采纳,获得30
6秒前
6秒前
6秒前
子车茗应助RRRCY采纳,获得20
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
wei完成签到,获得积分20
6秒前
7秒前
7秒前
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
7秒前
8秒前
烟花应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3670919
求助须知:如何正确求助?哪些是违规求助? 3227795
关于积分的说明 9777243
捐赠科研通 2937977
什么是DOI,文献DOI怎么找? 1609718
邀请新用户注册赠送积分活动 760446
科研通“疑难数据库(出版商)”最低求助积分说明 735959