Once and for All: Universal Transferable Adversarial Perturbation against Deep Hashing-Based Facial Image Retrieval

对抗制 散列函数 计算机科学 人工智能 图像(数学) 计算机视觉 模式识别(心理学) 计算机安全
作者
Long Tang,Dengpan Ye,Yan Liu,Chuanxi Chen,Yunming Zhang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (6): 5136-5144
标识
DOI:10.1609/aaai.v38i6.28319
摘要

Deep Hashing (DH)-based image retrieval has been widely applied to face-matching systems due to its accuracy and efficiency. However, this convenience comes with an increased risk of privacy leakage. DH models inherit the vulnerability to adversarial attacks, which can be used to prevent the retrieval of private images. Existing adversarial attacks against DH typically target a single image or a specific class of images, lacking universal adversarial perturbation for the entire hash dataset. In this paper, we propose the first universal transferable adversarial perturbation against DH-based facial image retrieval, a single perturbation can protect all images. Specifically, we explore the relationship between clusters learned by different DH models and define the optimization objective of universal perturbation as leaving from the overall hash center. To mitigate the challenge of single-objective optimization, we randomly obtain sub-cluster centers and further propose sub-task-based meta-learning to aid in overall optimization. We test our method with popular facial datasets and DH models, indicating impressive cross-image, -identity, -model, and -scheme universal anti-retrieval performance. Compared to state-of-the-art methods, our performance is competitive in white-box settings and exhibits significant improvements of 10%-70% in transferability in all black-box settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
姚断天完成签到 ,获得积分10
1秒前
Watsun完成签到,获得积分10
2秒前
2秒前
cavalry发布了新的文献求助10
2秒前
xxxx发布了新的文献求助10
3秒前
Rubby应助qiang采纳,获得10
4秒前
Watsun发布了新的文献求助10
4秒前
4秒前
研友_8RyzBZ发布了新的文献求助10
6秒前
6秒前
Lancent完成签到,获得积分10
6秒前
大可完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
9秒前
xxxx完成签到,获得积分10
10秒前
善学以致用应助李锐采纳,获得10
10秒前
脑洞疼应助李锐采纳,获得10
10秒前
大个应助偷影子的人采纳,获得10
10秒前
彭于晏应助李锐采纳,获得10
10秒前
ruochenzu发布了新的文献求助30
10秒前
丘比特应助李锐采纳,获得10
10秒前
wanci应助李锐采纳,获得10
10秒前
汉堡包应助李锐采纳,获得10
10秒前
李爱国应助李锐采纳,获得10
10秒前
打打应助李锐采纳,获得10
11秒前
酷波er应助zx采纳,获得10
12秒前
12秒前
12秒前
yy完成签到,获得积分10
13秒前
dfgrtbddffh发布了新的文献求助10
13秒前
泡泡完成签到,获得积分10
13秒前
长风与海浪完成签到 ,获得积分10
14秒前
星辰大海应助小鹿5460采纳,获得10
15秒前
16秒前
16秒前
大个应助韦颖采纳,获得20
16秒前
fool发布了新的文献求助10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959110
求助须知:如何正确求助?哪些是违规求助? 3505445
关于积分的说明 11123768
捐赠科研通 3237126
什么是DOI,文献DOI怎么找? 1788987
邀请新用户注册赠送积分活动 871477
科研通“疑难数据库(出版商)”最低求助积分说明 802821