Once and for All: Universal Transferable Adversarial Perturbation against Deep Hashing-Based Facial Image Retrieval

对抗制 散列函数 计算机科学 人工智能 图像(数学) 计算机视觉 模式识别(心理学) 计算机安全
作者
Long Tang,Dengpan Ye,Yan Liu,Chuanxi Chen,Yunming Zhang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (6): 5136-5144
标识
DOI:10.1609/aaai.v38i6.28319
摘要

Deep Hashing (DH)-based image retrieval has been widely applied to face-matching systems due to its accuracy and efficiency. However, this convenience comes with an increased risk of privacy leakage. DH models inherit the vulnerability to adversarial attacks, which can be used to prevent the retrieval of private images. Existing adversarial attacks against DH typically target a single image or a specific class of images, lacking universal adversarial perturbation for the entire hash dataset. In this paper, we propose the first universal transferable adversarial perturbation against DH-based facial image retrieval, a single perturbation can protect all images. Specifically, we explore the relationship between clusters learned by different DH models and define the optimization objective of universal perturbation as leaving from the overall hash center. To mitigate the challenge of single-objective optimization, we randomly obtain sub-cluster centers and further propose sub-task-based meta-learning to aid in overall optimization. We test our method with popular facial datasets and DH models, indicating impressive cross-image, -identity, -model, and -scheme universal anti-retrieval performance. Compared to state-of-the-art methods, our performance is competitive in white-box settings and exhibits significant improvements of 10%-70% in transferability in all black-box settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助zyo515采纳,获得30
刚刚
2秒前
Ashley完成签到,获得积分10
3秒前
3秒前
DY发布了新的文献求助10
3秒前
stszd完成签到,获得积分10
4秒前
轻爱发布了新的文献求助10
4秒前
彼岸完成签到,获得积分10
4秒前
Orange应助husaheng采纳,获得10
5秒前
5秒前
living笑白完成签到,获得积分10
5秒前
6秒前
6秒前
搞对发布了新的文献求助10
7秒前
酷炫素发布了新的文献求助10
7秒前
8秒前
兆兆完成签到 ,获得积分10
9秒前
9秒前
ZeZeZe发布了新的文献求助10
10秒前
10秒前
在水一方应助redion采纳,获得10
11秒前
AptRank完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
irochi发布了新的文献求助10
13秒前
JarodT发布了新的文献求助10
14秒前
轻爱完成签到,获得积分10
15秒前
复杂白风发布了新的文献求助10
15秒前
聪明短靴完成签到 ,获得积分10
16秒前
NexusExplorer应助咸鱼咔咔咔采纳,获得30
17秒前
18秒前
19秒前
20秒前
ZeZeZe完成签到,获得积分20
20秒前
晓米完成签到 ,获得积分10
21秒前
Siney发布了新的文献求助10
22秒前
落寞丹萱发布了新的文献求助10
24秒前
24秒前
24秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475840
求助须知:如何正确求助?哪些是违规求助? 3067547
关于积分的说明 9104650
捐赠科研通 2759116
什么是DOI,文献DOI怎么找? 1513963
邀请新用户注册赠送积分活动 699928
科研通“疑难数据库(出版商)”最低求助积分说明 699204