底盘
汽车工程
计算机科学
开发(拓扑)
车辆动力学
控制(管理)
工程类
机械工程
人工智能
数学
数学分析
作者
Chang‐Su Kim,Alexander O'Neill,Carlo Lugaro
出处
期刊:SAE technical paper series
日期:2024-04-09
摘要
<div class="section abstract"><div class="htmlview paragraph">As the automotive industry accelerates its virtual engineering capabilities, there is a growing requirement for increased accuracy across a broad range of vehicle simulations. Regarding control system development, utilizing vehicle simulations to conduct ‘pre-tuning’ activities can significantly reduce time and costs. However, achieving an accurate prediction of, e.g., stopping distance, requires accurate tire modeling. The Magic Formula tire model is often used to effectively model the tire response within vehicle dynamics simulations. However, such models often: i) represent the tire driving on sandpaper; and ii) do not accurately capture the transient response over a wide slip range. In this paper, a novel methodology is developed using the MF-Tyre/MF-Swift tire model to enhance the accuracy of ABS braking simulations. The methodology – developed between Hyundai Motor Company and Siemens Digital Industries Software – is validated on a full-vehicle level by comparing ABS braking simulations of ‘sandpaper’, ‘asphalt’, and ‘translated asphalt’ tire models against full-vehicle measurements, where friction modeling provided a way to translate sandpaper tire models to represent tires on asphalt. Results show a much-improved correlation of the asphalt-based simulations with vehicle measurements compared with flat-trac-based simulations. Thus, the methodology provides a suitable tire model for ABS braking simulations in the early stages of vehicle development without requiring physical vehicle tests.</div></div>
科研通智能强力驱动
Strongly Powered by AbleSci AI