材料科学
合金
沉淀硬化
延展性(地球科学)
降水
硬化(计算)
复合材料
大气温度范围
冶金
热力学
蠕动
物理
气象学
图层(电子)
作者
Jing Huang,Wanpeng Li,Tao Yang,T.H. Chou,Rui Zhou,Bin Liu,J.C. Huang,Yong Liu
标识
DOI:10.1016/j.jmst.2024.02.077
摘要
Modern engineering has long been in demand for high-performance additive manufactured materials for harsh working conditions. The idea of high entropy alloy (HEA), medium entropy alloy (MEA), and multi-principal-element alloy (MPEA) provides a new way for alloy design. In this work, we develop a Co42Cr20Ni30Ti4Al4 quinary MEA which exhibits a superiority of mechanical properties over a wide temperature ranging from 77 to 873 K via selective laser melting (SLM) and post-heat treatment. The present MEA achieves an excellent ultimate tensile strength (UTS) of 1586 MPa with a total elongation (TE) of 22.7% at 298 K, a UTS of 1944 MPa with a TE of 22.6% at 77 K, and a UTS of 1147 MPa with a TE of 9.1% at 873 K. The excellent mechanical properties stem from the microstructures composed of partially refined grains and heterogeneously precipitated L12 phase due to the concurrence of recrystallization and precipitation. The grain boundary hardening, precipitation hardening, and dislocation hardening contribute to the high YS at 298 and 77 K. Interactions of nano-spaced stacking faults (SFs) including SFs networks, Lomer-Cottrell locks (L-C locks), and anti-phase boundaries (APBs) induced by the shearing of L12 phase are responsible for the high strain hardening rate and plasticity at 77 K. Our work provides a new insight for the incorporation of precipitation hardening and additive manufacturing technology, paving the avenue for the development of high-performance structural materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI