DesTrans: A medical image fusion method based on Transformer and improved DenseNet

计算机科学 人工智能 变压器 图像融合 深度学习 特征提取 冗余(工程) 像素 计算机视觉 模式识别(心理学) 图像(数学) 工程类 操作系统 电气工程 电压
作者
Yumeng Song,Yin Dai,Weibin Liu,Yue Liu,Xinpeng Liu,Qi Yu,Xinghan Liu,Ningfeng Que,Mingzhe Li
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:174: 108463-108463 被引量:5
标识
DOI:10.1016/j.compbiomed.2024.108463
摘要

Medical image fusion can provide doctors with more detailed data and thus improve the accuracy of disease diagnosis. In recent years, deep learning has been widely used in the field of medical image fusion. The traditional method of medical image fusion is to operate by superimposing and other methods of pixels. The introduction of deep learning methods has improved the effectiveness of medical image fusion. However, these methods still have problems such as edge blurring and information redundancy. In this paper, we propose a deep learning network model based on Transformer and an improved DenseNet network module integration that can be applied to medical images and solve the above problems. At the same time, the method can be moved to natural images. The use of Transformer and dense concatenation enhances the feature extraction capability of the method by limiting the feature loss which reduces the risk of edge blurring. We compared several representative traditional methods and more advanced deep learning methods with this method. The experimental results show that the Transformer and the improved DenseNet network module have a strong capability of feature extraction. The method yields good results both in terms of visual quality and objective image evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
163发布了新的文献求助10
3秒前
3秒前
甜甜圈发布了新的文献求助10
4秒前
5秒前
5秒前
可爱的函函应助liu_zc采纳,获得10
6秒前
6秒前
Liufgui应助啊哭采纳,获得10
7秒前
7秒前
Steven发布了新的文献求助10
8秒前
水加冰糖发布了新的文献求助10
9秒前
希望天下0贩的0应助163采纳,获得10
9秒前
h。完成签到,获得积分10
9秒前
大地完成签到,获得积分10
9秒前
10秒前
11秒前
12秒前
13秒前
h。发布了新的文献求助10
14秒前
randylch完成签到,获得积分0
14秒前
14秒前
于于发布了新的文献求助10
15秒前
15秒前
hakuna_matata完成签到 ,获得积分10
15秒前
17秒前
huangbing123发布了新的文献求助10
18秒前
18秒前
威武鸽子发布了新的文献求助10
19秒前
Liufgui应助妮夏采纳,获得10
19秒前
北有云烟完成签到 ,获得积分10
21秒前
asdzsx发布了新的文献求助10
21秒前
Mistletoe完成签到 ,获得积分10
22秒前
明天见发布了新的文献求助10
22秒前
酷波er应助撒大苏打采纳,获得10
23秒前
25秒前
李李李李李完成签到,获得积分10
25秒前
laz完成签到,获得积分10
25秒前
王m完成签到 ,获得积分10
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998871
求助须知:如何正确求助?哪些是违规求助? 3538355
关于积分的说明 11273977
捐赠科研通 3277299
什么是DOI,文献DOI怎么找? 1807509
邀请新用户注册赠送积分活动 883909
科研通“疑难数据库(出版商)”最低求助积分说明 810075