Attention Modules Improve Image-Level Anomaly Detection for Industrial Inspection: A DifferNet Case Study

异常检测 计算机科学 异常(物理) 计算机视觉 图像(数学) 人工智能 凝聚态物理 物理
作者
André Luiz Vieira e Silva,Francisco Simões,Danny Kowerko,Tobias Schlosser,Felipe Battisti,Verônica Teichrieb
标识
DOI:10.1109/wacv57701.2024.00806
摘要

Within (semi-)automated visual industrial inspection, learning-based approaches for assessing visual defects, including deep neural networks, enable the processing of otherwise small defect patterns in pixel size on high-resolution imagery. The emergence of these often rarely occurring defect patterns explains the general need for labeled data corpora. To alleviate this issue and advance the current state of the art in unsupervised visual inspection, this work proposes a DifferNet-based solution enhanced with attention modules: AttentDifferNet. It improves image-level detection and classification capabilities on three visual anomaly detection datasets for industrial inspection: InsPLAD-fault, MVTec AD, and Semiconductor Wafer. In comparison to the state of the art, AttentDifferNet achieves improved results, which are, in turn, highlighted throughout our quali-quantitative study. Our quantitative evaluation shows an average improvement - compared to DifferNet -of 1.77 ± 0.25 percentage points in overall AUROC considering all three datasets, reaching SOTA results in InsPLAD-fault, an industrial inspection in-the-wild dataset. As our variants to AttentDifferNet show great prospects in the context of currently investigated approaches, a baseline is formulated, emphasizing the importance of attention for industrial anomaly detection both in the wild and in controlled environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
seal发布了新的文献求助10
3秒前
myduty完成签到 ,获得积分10
3秒前
123完成签到,获得积分10
3秒前
4秒前
4秒前
老实雁蓉完成签到,获得积分10
6秒前
6秒前
Brian发布了新的文献求助10
6秒前
6秒前
6秒前
寒江雪举报起名求助涉嫌违规
8秒前
洞幺拐发布了新的文献求助10
8秒前
8秒前
严剑封发布了新的文献求助10
10秒前
zcy发布了新的文献求助10
11秒前
seal完成签到,获得积分10
11秒前
11秒前
12秒前
大个应助fan采纳,获得10
13秒前
包容的世倌完成签到 ,获得积分10
13秒前
zhaoyaoshi发布了新的文献求助10
13秒前
那蝉完成签到,获得积分10
14秒前
朱怀琳发布了新的文献求助10
14秒前
yuan完成签到,获得积分10
17秒前
那蝉发布了新的文献求助10
17秒前
无心的可仁完成签到,获得积分10
18秒前
DJANGO发布了新的文献求助10
19秒前
sxp1031完成签到,获得积分10
19秒前
Brian完成签到,获得积分20
19秒前
meng完成签到,获得积分10
20秒前
天天快乐应助zzzg采纳,获得10
20秒前
21秒前
ooo娜完成签到,获得积分20
21秒前
情怀应助zhaoyaoshi采纳,获得10
21秒前
21秒前
22秒前
22秒前
23秒前
anjia发布了新的文献求助30
25秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961083
求助须知:如何正确求助?哪些是违规求助? 3507362
关于积分的说明 11135734
捐赠科研通 3239863
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803150