Blockchained Dual-Asynchronous Federated Learning Services for Digital Twin Empowered Edge-Cloud Continuum

计算机科学 云计算 边缘设备 GSM演进的增强数据速率 异步通信 边缘计算 分布式计算 计算机网络 人工智能 操作系统
作者
Youyang Qu,Shui Yu,Longxiang Gao,Keshav Sood,Yong Xiang
出处
期刊:IEEE Transactions on Services Computing [Institute of Electrical and Electronics Engineers]
卷期号:17 (3): 836-849 被引量:13
标识
DOI:10.1109/tsc.2024.3382952
摘要

The booming of learning-based Artificial Intelligence (AI) enables the integration of Big Data and emerging computing architectures, which facilitate the Edge-AI-as-a-Service (EAaaS) in the edge-cloud continuum. To meet the emerging demands, such as privacy preservation and autonomy, blockchain-enabled federated learning (B-FL) is proposed, which further provides decentralized processing, data falsification avoidance, and learning model reliability. However, synchronous global aggregation, which is deployed in most existing B-FL paradigms, is dragging down the performances due to the data and computing resources heterogeneity of diverse edge devices. In addition, the restricted resources of edge devices pose further challenges in executing learning tasks and blockchain-based consensus simultaneously. To solve these issues, we propose a blockchained dual-asynchronous federated learning (BAFL-DT) service model for EAaaS in the digital twin empowered edge-cloud continuum. In BAFL-DT, federated learning services are run on local edge devices, while the global aggregation is achieved by the consensus process of digital twins implemented in the cloud. Besides, dual-asynchronous FL allows both local training and global aggregation to be performed in an asynchronous manner, which is uniquely enabled by the proposed paradigm. Extensive evaluations of real-world datasets testify to the superior performances of EAaaS by improving accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小蘑菇应助研友_Z3vN0n采纳,获得80
1秒前
dj发布了新的文献求助10
1秒前
1秒前
Aom发布了新的文献求助10
1秒前
Zx_1993应助加勒比海带采纳,获得10
1秒前
2秒前
zila完成签到,获得积分10
2秒前
木木完成签到,获得积分10
2秒前
咸鱼发布了新的文献求助10
2秒前
哈哈哈大赞完成签到,获得积分10
3秒前
YWJ发布了新的文献求助10
3秒前
3秒前
张一亦可完成签到,获得积分10
3秒前
3秒前
鲁鱼完成签到,获得积分10
3秒前
NingZH发布了新的文献求助10
3秒前
王杰秀发布了新的文献求助10
3秒前
4秒前
灵巧山菡完成签到,获得积分10
4秒前
4秒前
CuCu发布了新的文献求助10
4秒前
默默善愁发布了新的文献求助10
5秒前
mojojo发布了新的文献求助10
5秒前
木木发布了新的文献求助10
5秒前
晓晖完成签到,获得积分10
5秒前
copper发布了新的文献求助10
6秒前
6秒前
7秒前
yeeming发布了新的文献求助30
7秒前
7秒前
selfevidbet完成签到,获得积分10
7秒前
cccr完成签到,获得积分20
8秒前
8秒前
进击的momo完成签到,获得积分10
8秒前
大大发布了新的文献求助10
8秒前
wensri完成签到,获得积分10
9秒前
科研通AI6应助可靠雪雪采纳,获得10
9秒前
白沙叶发布了新的文献求助10
9秒前
王小树完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525966
求助须知:如何正确求助?哪些是违规求助? 4616113
关于积分的说明 14551945
捐赠科研通 4554358
什么是DOI,文献DOI怎么找? 2495803
邀请新用户注册赠送积分活动 1476217
关于科研通互助平台的介绍 1447879