Blockchained Dual-Asynchronous Federated Learning Services for Digital Twin Empowered Edge-Cloud Continuum

计算机科学 云计算 GSM演进的增强数据速率 异步通信 对偶(语法数字) 分布式计算 计算机网络 人工智能 操作系统 艺术 文学类
作者
Youyang Qu,Shui Yu,Longxiang Gao,Keshav Sood,Yong Xiang
出处
期刊:IEEE Transactions on Services Computing [Institute of Electrical and Electronics Engineers]
卷期号:17 (3): 836-849
标识
DOI:10.1109/tsc.2024.3382952
摘要

The booming of learning-based Artificial Intelligence (AI) enables the integration of Big Data and emerging computing architectures, which facilitate the Edge-AI-as-a-Service (EAaaS) in the edge-cloud continuum. To meet the emerging demands, such as privacy preservation and autonomy, blockchain-enabled federated learning (B-FL) is proposed, which further provides decentralized processing, data falsification avoidance, and learning model reliability. However, synchronous global aggregation, which is deployed in most existing B-FL paradigms, is dragging down the performances due to the data and computing resources heterogeneity of diverse edge devices. In addition, the restricted resources of edge devices pose further challenges in executing learning tasks and blockchain-based consensus simultaneously. To solve these issues, we propose a blockchained dual-asynchronous federated learning (BAFL-DT) service model for EAaaS in the digital twin empowered edge-cloud continuum. In BAFL-DT, federated learning services are run on local edge devices, while the global aggregation is achieved by the consensus process of digital twins implemented in the cloud. Besides, dual-asynchronous FL allows both local training and global aggregation to be performed in an asynchronous manner, which is uniquely enabled by the proposed paradigm. Extensive evaluations of real-world datasets testify to the superior performances of EAaaS by improving accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失眠的冰薇完成签到,获得积分10
1秒前
1秒前
小燕子完成签到,获得积分10
2秒前
Menkaz发布了新的文献求助10
2秒前
刘一完成签到 ,获得积分10
3秒前
zhangy完成签到,获得积分10
3秒前
yang发布了新的文献求助10
4秒前
iedq完成签到 ,获得积分10
4秒前
彩色千雁发布了新的文献求助10
6秒前
yyds发布了新的文献求助30
7秒前
老八完成签到,获得积分10
7秒前
8秒前
合适尔风完成签到,获得积分10
9秒前
9秒前
LL完成签到,获得积分10
9秒前
10秒前
qql发布了新的文献求助10
13秒前
mmmm发布了新的文献求助10
17秒前
YANGVV完成签到,获得积分10
17秒前
19秒前
细腻冰烟完成签到 ,获得积分10
20秒前
stewie完成签到 ,获得积分10
20秒前
飘逸蘑菇完成签到 ,获得积分10
21秒前
彩色千雁完成签到,获得积分10
22秒前
22秒前
执着的诗桃完成签到,获得积分10
23秒前
qql发布了新的文献求助10
23秒前
打打应助HJJHJH采纳,获得10
23秒前
汉堡包应助美好的菲音采纳,获得10
25秒前
25秒前
汉堡包应助jagger采纳,获得10
26秒前
领导范儿应助Menkaz采纳,获得10
26秒前
怕孤独的忆南完成签到,获得积分10
26秒前
浮游应助腻腻采纳,获得10
26秒前
熠熠发布了新的文献求助10
27秒前
27秒前
Sarah关注了科研通微信公众号
28秒前
David完成签到 ,获得积分10
29秒前
shanhe完成签到,获得积分10
29秒前
WANG完成签到,获得积分10
30秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5225537
求助须知:如何正确求助?哪些是违规求助? 4397211
关于积分的说明 13686001
捐赠科研通 4261743
什么是DOI,文献DOI怎么找? 2338660
邀请新用户注册赠送积分活动 1336070
关于科研通互助平台的介绍 1291974