Advancing Ligand Docking through Deep Learning: Challenges and Prospects in Virtual Screening

虚拟筛选 对接(动物) 计算机科学 结合亲和力 人工智能 机器学习 启发式 药物发现 计算生物学 化学 生物信息学 生物 生物化学 医学 护理部 受体
作者
Xujun Zhang,Chao Shen,Haotian Zhang,Yu Kang,Chang‐Yu Hsieh,Tingjun Hou
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:57 (10): 1500-1509 被引量:46
标识
DOI:10.1021/acs.accounts.4c00093
摘要

Molecular docking, also termed ligand docking (LD), is a pivotal element of structure-based virtual screening (SBVS) used to predict the binding conformations and affinities of protein-ligand complexes. Traditional LD methodologies rely on a search and scoring framework, utilizing heuristic algorithms to explore binding conformations and scoring functions to evaluate binding strengths. However, to meet the efficiency demands of SBVS, these algorithms and functions are often simplified, prioritizing speed over accuracy.The emergence of deep learning (DL) has exerted a profound impact on diverse fields, ranging from natural language processing to computer vision and drug discovery. DeepMind's AlphaFold2 has impressively exhibited its ability to accurately predict protein structures solely from amino acid sequences, highlighting the remarkable potential of DL in conformation prediction. This groundbreaking advancement circumvents the traditional search-scoring frameworks in LD, enhancing both accuracy and processing speed and thereby catalyzing a broader adoption of DL algorithms in binding pose prediction. Nevertheless, a consensus on certain aspects remains elusive.In this Account, we delineate the current status of employing DL to augment LD within the VS paradigm, highlighting our contributions to this domain. Furthermore, we discuss the challenges and future prospects, drawing insights from our scholarly investigations. Initially, we present an overview of VS and LD, followed by an introduction to DL paradigms, which deviate significantly from traditional search-scoring frameworks. Subsequently, we delve into the challenges associated with the development of DL-based LD (DLLD), encompassing evaluation metrics, application scenarios, and physical plausibility of the predicted conformations. In the evaluation of LD algorithms, it is essential to recognize the multifaceted nature of the metrics. While the accuracy of binding pose prediction, often measured by the success rate, is a pivotal aspect, the scoring/screening power and computational speed of these algorithms are equally important given the pivotal role of LD tools in VS. Regarding application scenarios, early methods focused on blind docking, where the binding site is unknown. However, recent studies suggest a shift toward identifying binding sites rather than solely predicting binding poses within these models. In contrast, LD with a known pocket in VS has been shown to be more practical. Physical plausibility poses another significant challenge. Although DLLD models often achieve higher success rates compared to traditional methods, they may generate poses with implausible local structures, such as incorrect bond angles or lengths, which are disadvantageous for postprocessing tasks like visualization. Finally, we discuss the future perspectives for DLLD, emphasizing the need to improve generalization ability, strike a balance between speed and accuracy, account for protein conformation flexibility, and enhance physical plausibility. Additionally, we delve into the comparison between generative and regression algorithms in this context, exploring their respective strengths and potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xzs发布了新的文献求助20
1秒前
ttzi完成签到,获得积分10
1秒前
Gagaga发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
个性妙芙完成签到,获得积分10
5秒前
LSQ47发布了新的文献求助10
6秒前
小马甲应助faye采纳,获得10
7秒前
8秒前
幽默千秋完成签到,获得积分10
8秒前
11111完成签到,获得积分10
10秒前
10秒前
紹魟发布了新的文献求助10
10秒前
10秒前
彭于晏应助刘壮实采纳,获得50
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
Jasper应助Ding采纳,获得30
14秒前
bkagyin应助coollz采纳,获得10
15秒前
momo发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
夜願完成签到,获得积分10
17秒前
一般路过人应助LYH采纳,获得10
18秒前
嘿嘿发布了新的文献求助10
19秒前
19秒前
neosalius完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
万能图书馆应助xzs采纳,获得10
22秒前
科目三应助Hanayu采纳,获得10
22秒前
23秒前
bkagyin应助虚心的大树采纳,获得10
23秒前
23秒前
自然易文发布了新的文献求助10
24秒前
LSQ47发布了新的文献求助10
24秒前
852应助真实的朝雪采纳,获得10
24秒前
neosalius发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5712031
求助须知:如何正确求助?哪些是违规求助? 5207432
关于积分的说明 15266074
捐赠科研通 4864074
什么是DOI,文献DOI怎么找? 2611194
邀请新用户注册赠送积分活动 1561461
关于科研通互助平台的介绍 1518793