Advancing Ligand Docking through Deep Learning: Challenges and Prospects in Virtual Screening

虚拟筛选 对接(动物) 计算机科学 结合亲和力 人工智能 机器学习 启发式 药物发现 计算生物学 化学 生物信息学 生物 生物化学 医学 护理部 受体
作者
Xujun Zhang,Chao Shen,Haotian Zhang,Yu Kang,Chang‐Yu Hsieh,Tingjun Hou
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:57 (10): 1500-1509 被引量:20
标识
DOI:10.1021/acs.accounts.4c00093
摘要

ConspectusMolecular docking, also termed ligand docking (LD), is a pivotal element of structure-based virtual screening (SBVS) used to predict the binding conformations and affinities of protein–ligand complexes. Traditional LD methodologies rely on a search and scoring framework, utilizing heuristic algorithms to explore binding conformations and scoring functions to evaluate binding strengths. However, to meet the efficiency demands of SBVS, these algorithms and functions are often simplified, prioritizing speed over accuracy.The emergence of deep learning (DL) has exerted a profound impact on diverse fields, ranging from natural language processing to computer vision and drug discovery. DeepMind's AlphaFold2 has impressively exhibited its ability to accurately predict protein structures solely from amino acid sequences, highlighting the remarkable potential of DL in conformation prediction. This groundbreaking advancement circumvents the traditional search-scoring frameworks in LD, enhancing both accuracy and processing speed and thereby catalyzing a broader adoption of DL algorithms in binding pose prediction. Nevertheless, a consensus on certain aspects remains elusive.In this Account, we delineate the current status of employing DL to augment LD within the VS paradigm, highlighting our contributions to this domain. Furthermore, we discuss the challenges and future prospects, drawing insights from our scholarly investigations. Initially, we present an overview of VS and LD, followed by an introduction to DL paradigms, which deviate significantly from traditional search-scoring frameworks. Subsequently, we delve into the challenges associated with the development of DL-based LD (DLLD), encompassing evaluation metrics, application scenarios, and physical plausibility of the predicted conformations. In the evaluation of LD algorithms, it is essential to recognize the multifaceted nature of the metrics. While the accuracy of binding pose prediction, often measured by the success rate, is a pivotal aspect, the scoring/screening power and computational speed of these algorithms are equally important given the pivotal role of LD tools in VS. Regarding application scenarios, early methods focused on blind docking, where the binding site is unknown. However, recent studies suggest a shift toward identifying binding sites rather than solely predicting binding poses within these models. In contrast, LD with a known pocket in VS has been shown to be more practical. Physical plausibility poses another significant challenge. Although DLLD models often achieve higher success rates compared to traditional methods, they may generate poses with implausible local structures, such as incorrect bond angles or lengths, which are disadvantageous for postprocessing tasks like visualization. Finally, we discuss the future perspectives for DLLD, emphasizing the need to improve generalization ability, strike a balance between speed and accuracy, account for protein conformation flexibility, and enhance physical plausibility. Additionally, we delve into the comparison between generative and regression algorithms in this context, exploring their respective strengths and potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XD824完成签到,获得积分10
1秒前
3秒前
禾风发布了新的文献求助10
3秒前
XD824发布了新的文献求助10
4秒前
共享精神应助传统的怀梦采纳,获得10
5秒前
8秒前
8秒前
搜集达人应助八戒的梦想采纳,获得10
10秒前
Yfyyyyyy完成签到,获得积分10
11秒前
YamDaamCaa应助司空豁采纳,获得30
11秒前
11秒前
ziyuexu发布了新的文献求助10
12秒前
13秒前
香蕉觅云应助旅行者采纳,获得30
13秒前
大雪发布了新的文献求助10
13秒前
李爱国应助高挑的代男采纳,获得10
14秒前
14秒前
落寞鞋子完成签到,获得积分10
14秒前
15秒前
16秒前
wenge发布了新的文献求助10
16秒前
17秒前
禾风完成签到,获得积分10
18秒前
汉堡包应助李瑞采纳,获得20
19秒前
fzh发布了新的文献求助10
20秒前
ZAJsci发布了新的文献求助10
20秒前
20秒前
23秒前
23秒前
msk发布了新的文献求助10
24秒前
超级的金毛完成签到,获得积分10
24秒前
落寞鞋子发布了新的文献求助10
24秒前
spark完成签到,获得积分10
28秒前
wenge完成签到,获得积分20
28秒前
28秒前
28秒前
Rico发布了新的文献求助10
29秒前
myj完成签到 ,获得积分10
29秒前
29秒前
李小新完成签到 ,获得积分10
30秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979611
求助须知:如何正确求助?哪些是违规求助? 3523559
关于积分的说明 11218024
捐赠科研通 3261063
什么是DOI,文献DOI怎么找? 1800385
邀请新用户注册赠送积分活动 879079
科研通“疑难数据库(出版商)”最低求助积分说明 807160