已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Advancing Ligand Docking through Deep Learning: Challenges and Prospects in Virtual Screening

虚拟筛选 对接(动物) 计算机科学 结合亲和力 人工智能 机器学习 启发式 药物发现 计算生物学 化学 生物信息学 生物 生物化学 医学 护理部 受体
作者
Xujun Zhang,Chao Shen,Haotian Zhang,Yu Kang,Chang‐Yu Hsieh,Tingjun Hou
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:57 (10): 1500-1509 被引量:34
标识
DOI:10.1021/acs.accounts.4c00093
摘要

ConspectusMolecular docking, also termed ligand docking (LD), is a pivotal element of structure-based virtual screening (SBVS) used to predict the binding conformations and affinities of protein–ligand complexes. Traditional LD methodologies rely on a search and scoring framework, utilizing heuristic algorithms to explore binding conformations and scoring functions to evaluate binding strengths. However, to meet the efficiency demands of SBVS, these algorithms and functions are often simplified, prioritizing speed over accuracy.The emergence of deep learning (DL) has exerted a profound impact on diverse fields, ranging from natural language processing to computer vision and drug discovery. DeepMind's AlphaFold2 has impressively exhibited its ability to accurately predict protein structures solely from amino acid sequences, highlighting the remarkable potential of DL in conformation prediction. This groundbreaking advancement circumvents the traditional search-scoring frameworks in LD, enhancing both accuracy and processing speed and thereby catalyzing a broader adoption of DL algorithms in binding pose prediction. Nevertheless, a consensus on certain aspects remains elusive.In this Account, we delineate the current status of employing DL to augment LD within the VS paradigm, highlighting our contributions to this domain. Furthermore, we discuss the challenges and future prospects, drawing insights from our scholarly investigations. Initially, we present an overview of VS and LD, followed by an introduction to DL paradigms, which deviate significantly from traditional search-scoring frameworks. Subsequently, we delve into the challenges associated with the development of DL-based LD (DLLD), encompassing evaluation metrics, application scenarios, and physical plausibility of the predicted conformations. In the evaluation of LD algorithms, it is essential to recognize the multifaceted nature of the metrics. While the accuracy of binding pose prediction, often measured by the success rate, is a pivotal aspect, the scoring/screening power and computational speed of these algorithms are equally important given the pivotal role of LD tools in VS. Regarding application scenarios, early methods focused on blind docking, where the binding site is unknown. However, recent studies suggest a shift toward identifying binding sites rather than solely predicting binding poses within these models. In contrast, LD with a known pocket in VS has been shown to be more practical. Physical plausibility poses another significant challenge. Although DLLD models often achieve higher success rates compared to traditional methods, they may generate poses with implausible local structures, such as incorrect bond angles or lengths, which are disadvantageous for postprocessing tasks like visualization. Finally, we discuss the future perspectives for DLLD, emphasizing the need to improve generalization ability, strike a balance between speed and accuracy, account for protein conformation flexibility, and enhance physical plausibility. Additionally, we delve into the comparison between generative and regression algorithms in this context, exploring their respective strengths and potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxe发布了新的文献求助10
4秒前
共享精神应助读研好难采纳,获得10
5秒前
hrb发布了新的文献求助10
7秒前
猪猪侠完成签到,获得积分10
7秒前
8秒前
斯文败类应助如意向真采纳,获得10
8秒前
朴实香露完成签到 ,获得积分10
8秒前
Echo完成签到,获得积分0
8秒前
没什么不可能哒完成签到,获得积分10
9秒前
英俊的铭应助云飞采纳,获得10
11秒前
昵称666发布了新的文献求助30
11秒前
kk发布了新的文献求助10
12秒前
迷路的蛟凤完成签到,获得积分10
12秒前
Hilda007应助韩雪霞采纳,获得10
17秒前
18秒前
18秒前
18秒前
20秒前
不量发布了新的文献求助10
21秒前
思源应助kk采纳,获得10
22秒前
劳健龙发布了新的文献求助10
22秒前
23秒前
waws发布了新的文献求助10
23秒前
24秒前
大个应助son采纳,获得10
25秒前
26秒前
Rain_BJ发布了新的文献求助10
29秒前
29秒前
203发布了新的文献求助30
30秒前
陈海伦完成签到 ,获得积分10
30秒前
hrb完成签到,获得积分10
33秒前
瓜瓜程完成签到 ,获得积分10
34秒前
35秒前
38秒前
浮世清欢发布了新的文献求助10
39秒前
41秒前
41秒前
tuanheqi应助蛋鹅采纳,获得150
42秒前
精明向梦发布了新的文献求助10
43秒前
丘比特应助不量采纳,获得10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5063025
求助须知:如何正确求助?哪些是违规求助? 4286735
关于积分的说明 13357681
捐赠科研通 4104693
什么是DOI,文献DOI怎么找? 2247594
邀请新用户注册赠送积分活动 1253148
关于科研通互助平台的介绍 1184122