亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Design and Manufacturing of Aeroacoustic Metamaterial: Textured Rotor Blades with Enhanced Acoustic and Aerodynamic Performance

材料科学 空气动力学 推力 降噪 转子(电动) 噪音(视频) 声学 涡流 还原(数学) 航空航天工程 机械工程 工程类 计算机科学 机械 物理 图像(数学) 人工智能 数学 几何学
作者
Yae-Joon Yang,Seo-Hyeon Han,Sunjoo Ahn,Jungwoo Kim,Seung‐Jae Lee,Keun Park
出处
期刊:Additive manufacturing [Elsevier]
卷期号:84: 104109-104109
标识
DOI:10.1016/j.addma.2024.104109
摘要

Unmanned aerial vehicles (UAVs), commonly referred to as drones, have attracted increasing attention as urban aerial mobility platforms. A pivotal consideration in their optimization is the reduction of rotor blade noise without compromising aerodynamic performance. This study endeavors to advance the field by developing aeroacoustic metamaterials tailored specifically for rotor blades, to concurrently achieve noise reduction and thrust enhancement. To enhance these acoustic and aerodynamic performances, the surface of the rotor blade was designed to incorporate various texture patterns. These textured blades were fabricated using photopolymerization-type additive manufacturing. Experimental investigations revealed that the grid-textured blade exhibited superior efficiency in noise reduction but an inferior thrust force. Numerical simulations were conducted to investigate the effect of surface texturing on the airflow near the blade. These simulations revealed that surface texturing effectively diminished the turbulence kinetic energy in the proximity of the blade, resulting in a corresponding reduction in the noise levels. However, a patterned groove located at the leading edge induces flow separation, leading to a discernible reduction in the thrust. An adaptive texture gradation method was then employed to avoid flow separation at the leading edge, and the resulting grid-textured blade demonstrated reduced noise and augmented thrust. The simultaneous enhancement of acoustic and aerodynamic performances signifies the emergence of an aeroacoustic metamaterial, offering a promising solution to the critical challenge of noise mitigation without compromising propulsion efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高大的清涟完成签到 ,获得积分10
刚刚
调皮的代双完成签到 ,获得积分10
3秒前
Clementine完成签到,获得积分10
5秒前
高高从梦发布了新的文献求助10
6秒前
CipherSage应助研0种牛马采纳,获得10
6秒前
今后应助娜娜采纳,获得10
16秒前
杨榆藤完成签到,获得积分10
16秒前
无花果应助Yzy采纳,获得10
18秒前
27秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
慕青应助科研通管家采纳,获得10
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
充电宝应助科研通管家采纳,获得10
29秒前
Akim应助科研通管家采纳,获得10
29秒前
orixero应助科研通管家采纳,获得10
29秒前
32秒前
高高从梦完成签到 ,获得积分10
33秒前
娜娜完成签到,获得积分10
35秒前
38秒前
自由橘子完成签到 ,获得积分10
41秒前
研0种牛马发布了新的文献求助10
42秒前
45秒前
48秒前
Mufreh发布了新的文献求助10
51秒前
机灵的静枫完成签到 ,获得积分10
52秒前
morena发布了新的文献求助50
53秒前
炸毛吐司完成签到,获得积分20
57秒前
BowieHuang应助OCDer采纳,获得70
57秒前
58秒前
58秒前
从容芮完成签到,获得积分0
1分钟前
与光完成签到 ,获得积分10
1分钟前
hey应助炸毛吐司采纳,获得20
1分钟前
Clementine发布了新的文献求助10
1分钟前
leicaixia完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
敌敌畏完成签到,获得积分10
1分钟前
123完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714244
求助须知:如何正确求助?哪些是违规求助? 5222163
关于积分的说明 15273002
捐赠科研通 4865715
什么是DOI,文献DOI怎么找? 2612323
邀请新用户注册赠送积分活动 1562451
关于科研通互助平台的介绍 1519674