Design and Manufacturing of Aeroacoustic Metamaterial: Textured Rotor Blades with Enhanced Acoustic and Aerodynamic Performance

材料科学 空气动力学 推力 降噪 转子(电动) 噪音(视频) 声学 涡流 还原(数学) 航空航天工程 机械工程 工程类 计算机科学 机械 物理 图像(数学) 人工智能 数学 几何学
作者
Yae-Joon Yang,Seo-Hyeon Han,Sunjoo Ahn,Jungwoo Kim,Seung‐Jae Lee,Keun Park
出处
期刊:Additive manufacturing [Elsevier]
卷期号:84: 104109-104109
标识
DOI:10.1016/j.addma.2024.104109
摘要

Unmanned aerial vehicles (UAVs), commonly referred to as drones, have attracted increasing attention as urban aerial mobility platforms. A pivotal consideration in their optimization is the reduction of rotor blade noise without compromising aerodynamic performance. This study endeavors to advance the field by developing aeroacoustic metamaterials tailored specifically for rotor blades, to concurrently achieve noise reduction and thrust enhancement. To enhance these acoustic and aerodynamic performances, the surface of the rotor blade was designed to incorporate various texture patterns. These textured blades were fabricated using photopolymerization-type additive manufacturing. Experimental investigations revealed that the grid-textured blade exhibited superior efficiency in noise reduction but an inferior thrust force. Numerical simulations were conducted to investigate the effect of surface texturing on the airflow near the blade. These simulations revealed that surface texturing effectively diminished the turbulence kinetic energy in the proximity of the blade, resulting in a corresponding reduction in the noise levels. However, a patterned groove located at the leading edge induces flow separation, leading to a discernible reduction in the thrust. An adaptive texture gradation method was then employed to avoid flow separation at the leading edge, and the resulting grid-textured blade demonstrated reduced noise and augmented thrust. The simultaneous enhancement of acoustic and aerodynamic performances signifies the emergence of an aeroacoustic metamaterial, offering a promising solution to the critical challenge of noise mitigation without compromising propulsion efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
anders完成签到 ,获得积分10
刚刚
1秒前
柳煜城完成签到,获得积分10
1秒前
Leila完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
充电宝应助清脆的夜白采纳,获得10
2秒前
2秒前
lxl发布了新的文献求助10
2秒前
明荼荼发布了新的文献求助10
3秒前
在水一方应助LSW采纳,获得10
3秒前
猩猩完成签到,获得积分10
3秒前
别闹闹完成签到 ,获得积分10
3秒前
紧张的铅笔完成签到,获得积分10
3秒前
www完成签到 ,获得积分10
3秒前
gwgplmz发布了新的文献求助10
3秒前
4秒前
专一的鸡翅完成签到 ,获得积分10
4秒前
4秒前
救驾来迟发布了新的文献求助10
4秒前
满意的大船完成签到,获得积分20
4秒前
明明千岁千岁千千岁完成签到 ,获得积分10
4秒前
科研通AI2S应助吴丹采纳,获得10
4秒前
星星完成签到 ,获得积分10
4秒前
lyl1995完成签到,获得积分10
4秒前
炙热行云完成签到,获得积分10
5秒前
无私的凌萱完成签到,获得积分10
6秒前
zhnf1179完成签到,获得积分10
6秒前
朱朱完成签到 ,获得积分10
6秒前
一只暮蝉23完成签到,获得积分10
6秒前
若山完成签到,获得积分10
7秒前
7秒前
CrsCrsCrs完成签到,获得积分10
7秒前
mxm完成签到,获得积分10
7秒前
Avatar完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
Criminology34应助平常的如风采纳,获得10
7秒前
somajason完成签到,获得积分10
7秒前
keyanlv发布了新的文献求助10
8秒前
风中外绣发布了新的文献求助10
8秒前
浮游应助AoAoo采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664939
求助须知:如何正确求助?哪些是违规求助? 4873377
关于积分的说明 15110105
捐赠科研通 4823973
什么是DOI,文献DOI怎么找? 2582614
邀请新用户注册赠送积分活动 1536518
关于科研通互助平台的介绍 1495130