Design and Manufacturing of Aeroacoustic Metamaterial: Textured Rotor Blades with Enhanced Acoustic and Aerodynamic Performance

材料科学 空气动力学 推力 降噪 转子(电动) 噪音(视频) 声学 涡流 还原(数学) 航空航天工程 机械工程 工程类 计算机科学 机械 物理 图像(数学) 人工智能 数学 几何学
作者
Yae-Joon Yang,Seo-Hyeon Han,Sunjoo Ahn,Jungwoo Kim,Seung‐Jae Lee,Keun Park
出处
期刊:Additive manufacturing [Elsevier]
卷期号:84: 104109-104109
标识
DOI:10.1016/j.addma.2024.104109
摘要

Unmanned aerial vehicles (UAVs), commonly referred to as drones, have attracted increasing attention as urban aerial mobility platforms. A pivotal consideration in their optimization is the reduction of rotor blade noise without compromising aerodynamic performance. This study endeavors to advance the field by developing aeroacoustic metamaterials tailored specifically for rotor blades, to concurrently achieve noise reduction and thrust enhancement. To enhance these acoustic and aerodynamic performances, the surface of the rotor blade was designed to incorporate various texture patterns. These textured blades were fabricated using photopolymerization-type additive manufacturing. Experimental investigations revealed that the grid-textured blade exhibited superior efficiency in noise reduction but an inferior thrust force. Numerical simulations were conducted to investigate the effect of surface texturing on the airflow near the blade. These simulations revealed that surface texturing effectively diminished the turbulence kinetic energy in the proximity of the blade, resulting in a corresponding reduction in the noise levels. However, a patterned groove located at the leading edge induces flow separation, leading to a discernible reduction in the thrust. An adaptive texture gradation method was then employed to avoid flow separation at the leading edge, and the resulting grid-textured blade demonstrated reduced noise and augmented thrust. The simultaneous enhancement of acoustic and aerodynamic performances signifies the emergence of an aeroacoustic metamaterial, offering a promising solution to the critical challenge of noise mitigation without compromising propulsion efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
idannn发布了新的文献求助10
1秒前
冬日倦.发布了新的文献求助10
1秒前
1秒前
Unbelievable完成签到,获得积分10
1秒前
cris_xu24发布了新的文献求助10
1秒前
pennell01完成签到,获得积分10
1秒前
JJ发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
3秒前
LewisAcid应助徐世业采纳,获得20
3秒前
邓邓完成签到,获得积分10
3秒前
GoGoGo完成签到,获得积分10
3秒前
4秒前
传奇3应助不安冬萱采纳,获得10
4秒前
烟雨夕阳完成签到,获得积分10
4秒前
LewisAcid应助大方的书雁采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
大橙子完成签到,获得积分10
5秒前
5秒前
如意完成签到,获得积分10
5秒前
一彤展翅完成签到,获得积分10
5秒前
luye发布了新的文献求助10
6秒前
Nuonuo发布了新的文献求助10
6秒前
传奇3应助啦啦采纳,获得10
6秒前
6秒前
坦率雪枫完成签到 ,获得积分10
7秒前
idannn完成签到,获得积分10
7秒前
7秒前
zzp发布了新的文献求助10
8秒前
丘比特应助guozi采纳,获得30
8秒前
Sunshine完成签到,获得积分10
9秒前
Thomas发布了新的文献求助10
9秒前
somous完成签到,获得积分10
9秒前
Zhy完成签到,获得积分10
9秒前
10秒前
慕青应助land采纳,获得10
10秒前
samtol发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613147
求助须知:如何正确求助?哪些是违规求助? 4698337
关于积分的说明 14897304
捐赠科研通 4735098
什么是DOI,文献DOI怎么找? 2546853
邀请新用户注册赠送积分活动 1510872
关于科研通互助平台的介绍 1473504