Design and Manufacturing of Aeroacoustic Metamaterial: Textured Rotor Blades with Enhanced Acoustic and Aerodynamic Performance

材料科学 空气动力学 推力 降噪 转子(电动) 噪音(视频) 声学 涡流 还原(数学) 航空航天工程 机械工程 工程类 计算机科学 机械 物理 几何学 数学 人工智能 图像(数学)
作者
Yae-Joon Yang,Seo-Hyeon Han,Sunjoo Ahn,Jungwoo Kim,Seung‐Jae Lee,Keun Park
出处
期刊:Additive manufacturing [Elsevier]
卷期号:84: 104109-104109
标识
DOI:10.1016/j.addma.2024.104109
摘要

Unmanned aerial vehicles (UAVs), commonly referred to as drones, have attracted increasing attention as urban aerial mobility platforms. A pivotal consideration in their optimization is the reduction of rotor blade noise without compromising aerodynamic performance. This study endeavors to advance the field by developing aeroacoustic metamaterials tailored specifically for rotor blades, to concurrently achieve noise reduction and thrust enhancement. To enhance these acoustic and aerodynamic performances, the surface of the rotor blade was designed to incorporate various texture patterns. These textured blades were fabricated using photopolymerization-type additive manufacturing. Experimental investigations revealed that the grid-textured blade exhibited superior efficiency in noise reduction but an inferior thrust force. Numerical simulations were conducted to investigate the effect of surface texturing on the airflow near the blade. These simulations revealed that surface texturing effectively diminished the turbulence kinetic energy in the proximity of the blade, resulting in a corresponding reduction in the noise levels. However, a patterned groove located at the leading edge induces flow separation, leading to a discernible reduction in the thrust. An adaptive texture gradation method was then employed to avoid flow separation at the leading edge, and the resulting grid-textured blade demonstrated reduced noise and augmented thrust. The simultaneous enhancement of acoustic and aerodynamic performances signifies the emergence of an aeroacoustic metamaterial, offering a promising solution to the critical challenge of noise mitigation without compromising propulsion efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ncjdoi发布了新的文献求助10
1秒前
d叨叨鱼发布了新的文献求助10
1秒前
1秒前
2秒前
和谐代灵完成签到,获得积分10
2秒前
无花果应助LZY采纳,获得10
6秒前
yilin发布了新的文献求助10
6秒前
Whitney完成签到,获得积分10
6秒前
liu发布了新的文献求助10
7秒前
hhhh完成签到 ,获得积分10
7秒前
橙zy发布了新的文献求助10
8秒前
哈哈哈哈完成签到,获得积分10
8秒前
nice1334完成签到,获得积分10
8秒前
Whitney发布了新的文献求助10
8秒前
笨笨鲜花完成签到,获得积分10
8秒前
文静完成签到,获得积分10
9秒前
田运凤完成签到,获得积分10
13秒前
14秒前
15秒前
合适忆之完成签到,获得积分10
16秒前
斯文败类应助菠萝采纳,获得10
17秒前
iM安完成签到,获得积分10
17秒前
Owen应助雪白的绯采纳,获得30
17秒前
17秒前
刘荣圣完成签到,获得积分10
18秒前
18秒前
传奇3应助科研小lese采纳,获得10
19秒前
19秒前
自觉的念之完成签到,获得积分10
21秒前
地瓜儿完成签到,获得积分10
21秒前
斯文败类应助吉他平方采纳,获得10
22秒前
科研通AI2S应助现代火车采纳,获得10
23秒前
wao完成签到 ,获得积分10
24秒前
25秒前
Lucifer完成签到,获得积分10
26秒前
Liu完成签到 ,获得积分10
27秒前
Liu完成签到,获得积分10
31秒前
sciLee发布了新的文献求助30
32秒前
茶油豆腐完成签到,获得积分10
32秒前
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148271
求助须知:如何正确求助?哪些是违规求助? 2799495
关于积分的说明 7834708
捐赠科研通 2456632
什么是DOI,文献DOI怎么找? 1307357
科研通“疑难数据库(出版商)”最低求助积分说明 628154
版权声明 601655