清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Adaptive Knowledge Distillation Based Lightweight Intelligent Fault Diagnosis Framework in IoT Edge Computing

计算机科学 边缘计算 物联网 分布式计算 蒸馏 断层(地质) GSM演进的增强数据速率 嵌入式系统 人工智能 化学 有机化学 地震学 地质学
作者
Yanzhi Wang,Ziyang Yu,Jinhong Wu,Chu Wang,Qi Zhou,Jiexiang Hu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (13): 23156-23169 被引量:4
标识
DOI:10.1109/jiot.2024.3387328
摘要

Intelligent fault diagnosis of mechanical equipment is crucial to ensure reliable operation. However, cloud-based fault diagnosis methods often encounter challenges such as time delays and data loss. Therefore, edge computing-based fault diagnosis has emerged as a promising alternative. However, the limited hardware resources of edge devices in the Industrial Internet of Things (IoT) pose significant challenges in striking a balance between diagnostic capabilities and operational efficiency. This paper introduces a novel lightweight intelligent fault diagnosis method, which is tailored for IoT edge computing scenarios. Optimal weights are trained on cloud computing and inference is performed on edge computing to ensure timely diagnosis. Based on adaptive knowledge distillation, fault knowledge is transferred from a cloud-based deep neural network model (teacher model) to an edge-based lightweight model (student model). By dynamically adjusting the distillation temperature, the student model effectively acquires and deeply understands the knowledge representation from the teacher model. Additionally, we explore practical considerations and potential challenges in the application of the proposed approach. Verification experiments were conducted on two experimental devices, and the NVIDIA Jetson Xavier NX suite was selected as the edge computing platform. The proposed method exhibited significant enhancements in diagnostic accuracy, demonstrating an average improvement of 10.7% compared to existing methods. In lightweight tests, our method achieved an average 25.5% increase in inference speed compared to current approaches. Furthermore, our method reduced memory usage by 96.58% compared to the teacher model, concurrently boosting processing speed by a factor of 8.79.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丰富白猫发布了新的文献求助10
4秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
back you up应助科研通管家采纳,获得50
5秒前
Lucas应助科研通管家采纳,获得150
5秒前
爱静静应助科研通管家采纳,获得10
5秒前
爱静静应助科研通管家采纳,获得10
5秒前
爱静静应助科研通管家采纳,获得10
5秒前
爱静静应助科研通管家采纳,获得10
5秒前
爱静静应助科研通管家采纳,获得10
5秒前
丰富白猫完成签到,获得积分20
15秒前
爱静静应助科研通管家采纳,获得10
2分钟前
clairevox应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
科目三应助小鳄鱼夸夸采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
orixero应助正在跳舞的猪采纳,获得50
2分钟前
方白秋完成签到,获得积分10
3分钟前
3分钟前
a4a01完成签到,获得积分10
3分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
back you up应助科研通管家采纳,获得10
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671283
求助须知:如何正确求助?哪些是违规求助? 3228145
关于积分的说明 9778617
捐赠科研通 2938406
什么是DOI,文献DOI怎么找? 1610009
邀请新用户注册赠送积分活动 760503
科研通“疑难数据库(出版商)”最低求助积分说明 736003