电解质
电化学
阴极
材料科学
化学工程
离子电导率
溶解
电导率
钠离子电池
法拉第效率
离子
电极
化学
工程类
物理化学
有机化学
作者
Kun Wang,Xiaobing Huang,Chucheng Luo,Youming Shen,Haiyan Wang,Tao Zhou
标识
DOI:10.1016/j.jcis.2023.04.006
摘要
Mn-based NASICON-type Na4MnV(PO4)3 (NMVP) has been widely investigated as one of the most promising alternatives to Na3V2(PO4)3 cathodes for sodium-ion batteries (SIBs) due to its higher energy density, higher abundance, and lower cost and toxicity compared to V. However, electrochemical performance for large-scale applications is limited by NMVP's inferior conductivity and structural degradation during cycling. Herein, a facile strategy to modify the surface/interphase properties of NMVP/C was reported using the thermally stable Al(PO3)3 precursor with a wet process followed by heat treatment to enhance the interface stability of electrodes. The nanomodified layer has the benefits of an ionic conductor (slight NaPO3) and robust composite (Al(PO3)3), which can facilitate the stability of Mn-based cathode materials and ionic conductivity. These merits endow 1 wt% Al(PO3)3-loaded NMVP/C cathodes with a high rate performance (102/61 mAh g-1 at 0.2/50 C) and impressive cyclability (88.5%/89.7% at 5 C/10 C after 3000/4000 cycles) in Na-ion batteries at 2.5-3.8 V. Moreover, when the cutoff voltage is raised to 4 V, improved electrochemical properties (111.6/50.8 mAh g-1 at 0.2/10 C and 71.4% after 1000 cycles at 5 C) are also realized. Such an enhancement indicates that facial surface modification engineering limits organic electrolyte erosion, inhibits transition metal dissolution and suppresses surface lattice degradation, which is confirmed by ex situ X-ray diffractometry and transmission electron microscopy. Therefore, the Al(PO3)3 surface modification strategy combined with mechanism analysis can provide a possible reference for advanced electrochemical properties in energy storage devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI