Hierarchical multi-robot navigation and formation in unknown environments via deep reinforcement learning and distributed optimization

机器人 强化学习 计算机科学 人工智能 钢筋 机器人学习 人机交互 移动机器人 工程类 结构工程
作者
Lu Chang,Liang Shan,Weilong Zhang,Yuewei Dai
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier]
卷期号:83: 102570-102570 被引量:14
标识
DOI:10.1016/j.rcim.2023.102570
摘要

Compared with a single robot, Multi-robot Systems (MRSs) can undertake more challenging tasks in complex scenarios benefiting from the increased transportation capacity and fault tolerance. This paper presents a hierarchical framework for multi-robot navigation and formation in unknown environments with static and dynamic obstacles, where the robots compute and maintain the optimized formation while making progress to the target together. In the proposed framework, each single robot is capable of navigating to the global target in unknown environments based on its local perception, and only limited communication among robots is required to obtain the optimal formation. Accordingly, three modules are included in this framework. Firstly, we design a learning network based on Deep Deterministic Policy Gradient (DDPG) to address the global navigation task for single robot, which derives end-to-end policies that map the robot's local perception into its velocity commands. To handle complex obstacle distributions (e.g. narrow/zigzag passage and local minimum) and stabilize the training process, strategies of Curriculum Learning (CL) and Reward Shaping (RS) are combined. Secondly, for an expected formation, its real-time configuration is optimized by a distributed optimization. This configuration considers surrounding obstacles and current formation status, and provides each robot with its formation target. Finally, a velocity adjustment method considering the robot kinematics is designed which adjusts the navigation velocity of each robot according to its formation target, making all the robots navigate to their targets while maintaining the expected formation. This framework allows for formation online reconfiguration and is scalable with the number of robots. Extensive simulations and 3-D evaluations verify that our method can navigate the MRS in unknown environments while maintaining the optimal formation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻松的芯完成签到 ,获得积分10
1秒前
阿曾完成签到 ,获得积分10
3秒前
哒哒完成签到 ,获得积分10
3秒前
shame完成签到 ,获得积分10
6秒前
one完成签到 ,获得积分10
6秒前
优雅的帅哥完成签到 ,获得积分10
6秒前
8秒前
哎嘿应助科研通管家采纳,获得10
9秒前
梓泽丘墟应助科研通管家采纳,获得20
9秒前
彭于彦祖应助科研通管家采纳,获得30
9秒前
顾矜应助科研通管家采纳,获得10
10秒前
哎嘿应助科研通管家采纳,获得10
10秒前
哎嘿应助科研通管家采纳,获得10
10秒前
无奈以南完成签到 ,获得积分10
12秒前
英俊的含蕾完成签到 ,获得积分10
12秒前
哇咔咔完成签到 ,获得积分10
13秒前
开朗小鸽子完成签到 ,获得积分10
14秒前
隐形曼青应助1459采纳,获得10
15秒前
劳资懒得起网名完成签到,获得积分10
16秒前
www完成签到,获得积分10
16秒前
huangxiaoniu完成签到,获得积分10
20秒前
任风完成签到,获得积分10
21秒前
ZONG完成签到,获得积分10
22秒前
nanfeng完成签到 ,获得积分10
22秒前
拼搏尔风完成签到,获得积分10
28秒前
Hello应助duonicola采纳,获得10
28秒前
Zzz完成签到,获得积分10
31秒前
爱静静应助晴栀采纳,获得10
32秒前
Amancio118完成签到 ,获得积分10
34秒前
eee完成签到,获得积分10
34秒前
TAA66完成签到,获得积分10
34秒前
bobochi完成签到 ,获得积分10
35秒前
Nan完成签到,获得积分10
35秒前
梓泽丘墟应助迅速的寻绿采纳,获得20
35秒前
李爱国应助Viva采纳,获得10
40秒前
XH完成签到,获得积分10
45秒前
无味完成签到,获得积分10
47秒前
冬雪完成签到 ,获得积分10
47秒前
49秒前
myg123完成签到 ,获得积分10
49秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162430
求助须知:如何正确求助?哪些是违规求助? 2813350
关于积分的说明 7900043
捐赠科研通 2472900
什么是DOI,文献DOI怎么找? 1316594
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602155