机器人
强化学习
计算机科学
人工智能
钢筋
机器人学习
人机交互
移动机器人
工程类
结构工程
作者
Lu Chang,Liang Shan,Weilong Zhang,Yuewei Dai
标识
DOI:10.1016/j.rcim.2023.102570
摘要
Compared with a single robot, Multi-robot Systems (MRSs) can undertake more challenging tasks in complex scenarios benefiting from the increased transportation capacity and fault tolerance. This paper presents a hierarchical framework for multi-robot navigation and formation in unknown environments with static and dynamic obstacles, where the robots compute and maintain the optimized formation while making progress to the target together. In the proposed framework, each single robot is capable of navigating to the global target in unknown environments based on its local perception, and only limited communication among robots is required to obtain the optimal formation. Accordingly, three modules are included in this framework. Firstly, we design a learning network based on Deep Deterministic Policy Gradient (DDPG) to address the global navigation task for single robot, which derives end-to-end policies that map the robot's local perception into its velocity commands. To handle complex obstacle distributions (e.g. narrow/zigzag passage and local minimum) and stabilize the training process, strategies of Curriculum Learning (CL) and Reward Shaping (RS) are combined. Secondly, for an expected formation, its real-time configuration is optimized by a distributed optimization. This configuration considers surrounding obstacles and current formation status, and provides each robot with its formation target. Finally, a velocity adjustment method considering the robot kinematics is designed which adjusts the navigation velocity of each robot according to its formation target, making all the robots navigate to their targets while maintaining the expected formation. This framework allows for formation online reconfiguration and is scalable with the number of robots. Extensive simulations and 3-D evaluations verify that our method can navigate the MRS in unknown environments while maintaining the optimal formation.
科研通智能强力驱动
Strongly Powered by AbleSci AI