A Reliable and Repeatable Model for Predicting Microvascular Invasion in Patients With Hepatocellular Carcinoma

肝细胞癌 接收机工作特性 放射科 队列 曲线下面积 多元分析 再现性 磁共振成像 多元统计 医学 金标准(测试) 试验预测值 核医学 内科学 机器学习 统计 数学 计算机科学
作者
Yunjing Tang,Xinhui Lu,Lijuan Liu,Xiangyang Huang,Ling Lin,Yixin Lü,Chuanji Zhou,Shaolv Lai,Ningbin Luo
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (8): 1521-1527 被引量:8
标识
DOI:10.1016/j.acra.2023.02.035
摘要

The reproducibility of imaging models for predicting microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC) remains questionable due to inconsistent interpretation of image signs. Our aim was to screen for high-consensus MRI features to develop a repeatable model for predicting MVI.We included 219 patients with HCC who underwent surgical resection, and patients were divided into a training cohort (n = 145) and a validation cohort (n = 74). Morphological characteristics, signal features on hepatobiliary phases, and dynamic enhancement patterns were qualitatively interobserver evaluated. Interobserver agreement was assessed using Cohen's κ for selecting features with high interobserver agreement. Risk factors that were significant in stepwise multivariate analysis and that could be measured with good interobserver agreement were used to construct a predictive model, which was assessed in the validation cohort. The diagnostic performance of the model was evaluated based on area under the receiver operating characteristic curve (AUC).Multivariate analysis identified nonsmooth tumor margin, absence of radiologic capsule, and intratumoral artery as independent risk factors of MVI. These MRI-based features showed good or nearly perfect interobserver agreement between radiologists (κ > 0.6). The predictive model predicted MVI well in the training (AUC 0.734) and validation cohorts (AUC 0.759) and fitted well to calibration curves.MRI features included nonsmooth tumor margin, absence of radiologic capsule, and intratumoral artery that can be assessed with high interobserver agreement can predict MVI in HCC patients. The predictive model described here may be useful to radiologists, regardless of experience level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜悦的香之完成签到 ,获得积分10
1秒前
随便完成签到 ,获得积分10
2秒前
3秒前
情怀应助科目三三次郎采纳,获得10
4秒前
4秒前
7秒前
调皮茹嫣关注了科研通微信公众号
7秒前
9秒前
余悸完成签到,获得积分20
11秒前
烟雨平生完成签到,获得积分10
12秒前
高兴的半芹完成签到,获得积分10
12秒前
工大机械完成签到,获得积分10
13秒前
心想事成完成签到 ,获得积分10
14秒前
Accepted应助夏青荷采纳,获得10
15秒前
heart1zzz发布了新的文献求助10
15秒前
寻雪完成签到,获得积分10
16秒前
研友_qZ6V1Z完成签到,获得积分10
16秒前
ebby完成签到,获得积分10
21秒前
21秒前
研友_VZG7GZ应助潇洒的煜采纳,获得10
21秒前
25秒前
26秒前
SciGPT应助JJ采纳,获得10
26秒前
28秒前
充电宝应助熊熊采纳,获得10
30秒前
烟花应助眼睛大的一斩采纳,获得10
31秒前
宋映梦发布了新的文献求助10
31秒前
程院发布了新的文献求助10
34秒前
35秒前
小蘑菇应助余悸采纳,获得10
35秒前
岱山完成签到,获得积分10
35秒前
Cassel完成签到,获得积分10
35秒前
36秒前
JJ发布了新的文献求助10
39秒前
眼睛大的一斩完成签到,获得积分10
43秒前
hswhswqkdh完成签到,获得积分10
44秒前
44秒前
45秒前
46秒前
46秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136325
求助须知:如何正确求助?哪些是违规求助? 2787443
关于积分的说明 7781374
捐赠科研通 2443393
什么是DOI,文献DOI怎么找? 1299137
科研通“疑难数据库(出版商)”最低求助积分说明 625359
版权声明 600939