转录组
代谢组
木质素
生物
生物合成
基因
代谢组学
植物
生物化学
基因表达
生物信息学
作者
Yuxin Li,Tingting Zhang,Yuqian Kang,Peng Wang,Wengang Yu,Jian Wang,Wei Li,Xingyu Jiang,Yang Zhou
标识
DOI:10.1016/j.ijbiomac.2023.124222
摘要
Sesuvium portulacastrum is a typical halophyte. However, few studies have investigated its salt-tolerant molecular mechanism. In this study, metabolome, transcriptome, and multi-flux full-length sequencing analysis were conducted to investigate the significantly different metabolites (SDMs) and differentially expressed genes (DEGs) of S. portulacastrum samples under salinity. The complete-length transcriptome of S. portulacastrum was developed, which contained 39,659 non-redundant unigenes. RNA-seq results showed that 52 DEGs involved in lignin biosynthesis may be responsible for S. portulacastrum salt tolerance. Furthermore, 130 SDMs were identified, and the salt response could be attributed to the p-coumaryl alcohol-rich in lignin biosynthesis. The co-expression network that was constructed after comparing the different salt treatment processes showed that the p-Coumaryl alcohol was linked to 30 DEGs. Herein, 8 structures genes, i.e., Sp4CL, SpCAD, SpCCR, SpCOMT, SpF5H, SpCYP73A, SpCCoAOMT, and SpC3′H were identified as significant factors in regulating lignin biosynthesis. Further investigation revealed that 64 putative transcription factors (TFs) may interact with the promoters of the above-mentioned genes. Together, the data revealed a potential regulatory network comprising important genes, putative TFs, and metabolites involved in the lignin biosynthesis of S. portulacastrum roots under salt stress, which could serve as a rich useful genetic resource for breeding excellent salt-tolerant plants.
科研通智能强力驱动
Strongly Powered by AbleSci AI