A Survey of Large Language Models

语言模型 计算机科学 主流 比例(比率) 人工智能 缩放比例 数据科学 自然语言处理 政治学 数学 物理 几何学 量子力学 法学
作者
Wayne Xin Zhao,Kun Zhou,Junyi Li,Tianyi Tang,Xiaolei Wang,Yupeng Hou,Yingqian Min,Beichen Zhang,Junjie Zhang,Zican Dong,Yifan Du,Yang Chen,Yushuo Chen,Zhipeng Chen,Jinhao Jiang,Ruiyang Ren,Yifan Li,Xinyu Tang,Zikang Liu,Peiyu Liu
出处
期刊:Cornell University - arXiv 被引量:1022
标识
DOI:10.48550/arxiv.2303.18223
摘要

Language is essentially a complex, intricate system of human expressions governed by grammatical rules. It poses a significant challenge to develop capable AI algorithms for comprehending and grasping a language. As a major approach, language modeling has been widely studied for language understanding and generation in the past two decades, evolving from statistical language models to neural language models. Recently, pre-trained language models (PLMs) have been proposed by pre-training Transformer models over large-scale corpora, showing strong capabilities in solving various NLP tasks. Since researchers have found that model scaling can lead to performance improvement, they further study the scaling effect by increasing the model size to an even larger size. Interestingly, when the parameter scale exceeds a certain level, these enlarged language models not only achieve a significant performance improvement but also show some special abilities that are not present in small-scale language models. To discriminate the difference in parameter scale, the research community has coined the term large language models (LLM) for the PLMs of significant size. Recently, the research on LLMs has been largely advanced by both academia and industry, and a remarkable progress is the launch of ChatGPT, which has attracted widespread attention from society. The technical evolution of LLMs has been making an important impact on the entire AI community, which would revolutionize the way how we develop and use AI algorithms. In this survey, we review the recent advances of LLMs by introducing the background, key findings, and mainstream techniques. In particular, we focus on four major aspects of LLMs, namely pre-training, adaptation tuning, utilization, and capacity evaluation. Besides, we also summarize the available resources for developing LLMs and discuss the remaining issues for future directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
橙子大王发布了新的文献求助10
1秒前
YY完成签到,获得积分10
1秒前
阿成发布了新的文献求助10
1秒前
1秒前
阿莲呐发布了新的文献求助20
1秒前
3秒前
JamesPei应助XXXX采纳,获得10
4秒前
5秒前
5秒前
坦率班完成签到 ,获得积分10
6秒前
星河发布了新的文献求助20
6秒前
七七完成签到,获得积分10
7秒前
8秒前
SLY完成签到 ,获得积分10
9秒前
9秒前
所所应助跳跳虎采纳,获得10
9秒前
wanci应助seedcode采纳,获得10
10秒前
我是老大应助完犊子采纳,获得10
10秒前
Kevin发布了新的文献求助30
10秒前
11秒前
12秒前
灰灰灰完成签到,获得积分10
14秒前
牛牛眉目发布了新的文献求助10
14秒前
16秒前
哈哈哈完成签到,获得积分10
16秒前
七七发布了新的文献求助10
18秒前
20秒前
研友_nPb9e8完成签到,获得积分10
21秒前
科研通AI2S应助satan9采纳,获得10
22秒前
22秒前
badyoungboy完成签到,获得积分10
22秒前
邵晓啸发布了新的文献求助20
23秒前
星河完成签到,获得积分10
25秒前
追梦少年完成签到,获得积分10
26秒前
26秒前
tamo完成签到,获得积分10
27秒前
seedcode发布了新的文献求助10
28秒前
不吃橘子完成签到,获得积分10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966370
求助须知:如何正确求助?哪些是违规求助? 3511789
关于积分的说明 11159900
捐赠科研通 3246400
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388