Surface Lattice Modulation through Chemical Delithiation toward a Stable Nickel-Rich Layered Oxide Cathode

化学 阴极 格子(音乐) 离子 化学工程 纳米技术 化学物理 物理化学 材料科学 声学 物理 工程类 有机化学
作者
Siqi Lu,Qinghua Zhang,Fanqi Meng,Yaning Liu,Jianjun Mao,Sijie Guo,Mu‐Yao Qi,Yan‐Song Xu,Yan Qiao,Sidong Zhang,Kecheng Jiang,Lin Gu,Yang Xia,Shuguang Chen,GuanHua Chen,Amin Cao,Li‐Jun Wan
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:145 (13): 7397-7407 被引量:50
标识
DOI:10.1021/jacs.2c13787
摘要

Nickel-rich layered oxides (NLOs) are considered as one of the most promising cathode materials for next-generation high-energy lithium-ion batteries (LIBs), yet their practical applications are currently challenged by the unsatisfactory cyclability and reliability owing to their inherent interfacial and structural instability. Herein, we demonstrate an approach to reverse the unstable nature of NLOs through surface solid reaction, by which the reconstructed surface lattice turns stable and robust against both side reactions and chemophysical breakdown, resulting in improved cycling performance. Specifically, conformal La(OH)3 nanoshells are built with their thicknesses controlled at nanometer accuracy, which act as a Li+ capturer and induce controlled reaction with the NLO surface lattices, thereby transforming the particle crust into an epitaxial layer with localized Ni/Li disordering, where lithium deficiency and nickel stabilization are both achieved by transforming oxidative Ni3+ into stable Ni2+. An optimized balance between surface stabilization and charge transfer is demonstrated by a representative NLO material, namely, LiNi0.83Co0.07Mn0.1O2, whose surface engineering leads to a highly improved capacity retention and excellent rate capability with a strong capability to inhibit the crack of NLO particles. Our study highlights the importance of surface chemistry in determining chemical and structural behaviors and paves a research avenue in controlling the surface lattice for the stabilization of NLOs toward reliable high-energy LIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助GSQ采纳,获得10
刚刚
1秒前
香蕉觅云应助123采纳,获得10
2秒前
xcli完成签到,获得积分10
4秒前
青椒炒皮蛋完成签到 ,获得积分10
5秒前
ZYQ完成签到 ,获得积分10
7秒前
Lamis完成签到 ,获得积分10
8秒前
热心不凡完成签到,获得积分10
11秒前
柚子发布了新的文献求助10
12秒前
12秒前
peipei完成签到,获得积分10
17秒前
sajdhjas发布了新的文献求助10
18秒前
坚强似狮完成签到,获得积分10
20秒前
20秒前
yx完成签到 ,获得积分10
20秒前
21秒前
24秒前
柚子完成签到,获得积分10
25秒前
Qianbaor68应助memter采纳,获得80
26秒前
小二郎应助科研通管家采纳,获得10
26秒前
Owen应助科研通管家采纳,获得10
26秒前
所所应助科研通管家采纳,获得10
26秒前
英俊的铭应助科研通管家采纳,获得20
26秒前
Orange应助科研通管家采纳,获得30
26秒前
深情安青应助科研通管家采纳,获得10
26秒前
26秒前
一心向雨发布了新的文献求助10
26秒前
27秒前
28秒前
欢呼凡旋完成签到,获得积分10
28秒前
留白完成签到 ,获得积分10
30秒前
shepherd发布了新的文献求助10
30秒前
sajdhjas完成签到,获得积分10
30秒前
超级小刺猬完成签到 ,获得积分10
30秒前
31秒前
科研通AI5应助DK采纳,获得10
31秒前
景笑天发布了新的文献求助10
32秒前
32秒前
Johnyang发布了新的文献求助30
32秒前
燧人氏发布了新的文献求助10
33秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737385
求助须知:如何正确求助?哪些是违规求助? 3281209
关于积分的说明 10023728
捐赠科研通 2997939
什么是DOI,文献DOI怎么找? 1644880
邀请新用户注册赠送积分活动 782304
科研通“疑难数据库(出版商)”最低求助积分说明 749762