已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Knowledge graph assisted end-to-end medical dialog generation

计算机科学 对话框 统一医学语言系统 对话 知识库 人工智能 图形 自然语言处理 理解力 情报检索 万维网 理论计算机科学 语言学 哲学 程序设计语言
作者
Deeksha Varshney,Aizan Zafar,Niranshu Kumar Behera,Asif Ekbal
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:139: 102535-102535 被引量:16
标识
DOI:10.1016/j.artmed.2023.102535
摘要

Medical dialog systems have the potential to assist e-medicine in improving access to healthcare services, improving patient treatment quality, and lowering medical expenses. In this research, we describe a knowledge-grounded conversation generation model that demonstrates how large-scale medical information in the form of knowledge graphs can aid in language comprehension and generation in medical dialog systems. Generic responses are often produced by existing generative dialog systems, resulting in monotonous and uninteresting conversations. To solve this problem, we combine various pre-trained language models with a medical knowledge base (UMLS) to generate clinically correct and human-like medical conversations using the recently released MedDialog-EN dataset. The medical-specific knowledge graph contains broadly 3 types of medical-related information, including disease, symptom and laboratory test. We perform reasoning over the retrieved knowledge graph by reading the triples in each graph using MedFact attention, which allows us to use semantic information from the graphs for better response generation. In order to preserve medical information, we employ a policy network, which effectively injects relevant entities associated with each dialog into the response. We also study how transfer learning can significantly improve the performance by utilizing a relatively small corpus, created by extending the recently released CovidDialog dataset, containing the dialogs for diseases that are symptoms of Covid-19. Empirical results on the MedDialog corpus and the extended CovidDialog dataset demonstrate that our proposed model significantly outperforms the state-of-the-art methods in terms of both automatic evaluation and human judgment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助追寻奄采纳,获得10
2秒前
futianyu完成签到 ,获得积分0
3秒前
pass完成签到 ,获得积分10
3秒前
4秒前
老四完成签到,获得积分10
6秒前
liyanglin完成签到 ,获得积分10
7秒前
huangdy发布了新的文献求助10
8秒前
9秒前
15秒前
DD立芬完成签到 ,获得积分10
17秒前
uranus完成签到,获得积分10
18秒前
凌云完成签到,获得积分10
18秒前
Polymer72发布了新的文献求助30
20秒前
20秒前
21秒前
24秒前
12332145678发布了新的文献求助10
27秒前
风中刺猬完成签到,获得积分10
28秒前
未必发布了新的文献求助10
29秒前
白茶泡泡球完成签到,获得积分20
31秒前
我睡觉的时候不困完成签到 ,获得积分10
32秒前
qq完成签到 ,获得积分10
32秒前
Huay完成签到 ,获得积分10
35秒前
12332145678完成签到,获得积分10
35秒前
Nina完成签到 ,获得积分10
38秒前
42秒前
轩少的完成签到 ,获得积分10
44秒前
科研通AI2S应助科研通管家采纳,获得10
45秒前
科研通AI2S应助科研通管家采纳,获得10
45秒前
Polymer72发布了新的文献求助30
45秒前
huangdy完成签到,获得积分10
47秒前
一角完成签到,获得积分20
50秒前
阳光刺眼完成签到 ,获得积分10
50秒前
今天喝咖啡吗完成签到,获得积分10
52秒前
jiangjiang完成签到 ,获得积分10
56秒前
och3完成签到,获得积分10
57秒前
柚子完成签到 ,获得积分10
57秒前
森花完成签到,获得积分10
59秒前
邪恶小天使完成签到 ,获得积分10
1分钟前
阿豪要发文章完成签到 ,获得积分10
1分钟前
高分求助中
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
Experimental research on the vibration of aviation elbow tube by 21~35 MPa fluid pressure pulsation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3338853
求助须知:如何正确求助?哪些是违规求助? 2966955
关于积分的说明 8627531
捐赠科研通 2646229
什么是DOI,文献DOI怎么找? 1449064
科研通“疑难数据库(出版商)”最低求助积分说明 671319
邀请新用户注册赠送积分活动 660078