Recent Advances Towards Practical LiNiO2 Cathode Materials: Optimised Calcination and Modification with W Via a Single Step Synthesis Route

材料科学 煅烧 掺杂剂 化学工程 阴极 电化学 兴奋剂 结晶学 纳米技术 冶金 物理化学 化学 电极 光电子学 生物化学 工程类 催化作用
作者
Matteo Bianchini,Damian Goonetilleke,Daniel Weber,François Fauth,Yuan Ma,Andrey Mazilkin,Felix Riewald,Philipp Kurzhals,Heino Sommer,Hubert A. Gasteiger,Torsten Brezesinski,Jürgen Janek
出处
期刊:Meeting abstracts 卷期号:MA2022-02 (3): 285-285
标识
DOI:10.1149/ma2022-023285mtgabs
摘要

LiNiO 2 has been long considered as a promising cathode material owing to its high practical energy density [1,2]. However, structural and surface instabilities, coupled with complexities in the synthesis, have thus far prevented its commercialisation [3]. In this talk I will review our recent work towards the use of LiNiO 2 as an actual cathode solution, via carefully controlled calcination conditions [4,5] and stabilization especially in terms of elemental substitution (doping) [6,7], but also of protective surface coating. To address issues with the material’s stability during synthesis and cycling, the use of an ammonium tungstate flux to modify both the LiNiO 2 crystal structure and primary particle morphology without introducing additional steps into the synthesis will be discussed here in particular detail. The successful preparation of LiNiO 2 modified with an industrially relevant amount of W (< 5 mol %) was confirmed using a combination of electron microscopy and synchrotron-based X-ray diffraction (XRD). Refinement of structural models against the data suggests tungsten dopant ions occupy the Ni site and concurrently induce migration of Ni 2+ to the Li sites. Moreover, W enrichment at grain boundaries has been observed under some of the synthesis conditions. Variable temperature XRD was used to highlight the improved stability of the W-doped materials during the calcination at high temperatures. Electrochemical characterisation shows that W-doped LiNiO 2 offers improved cycle life at the expense of little specific capacity. The structural consequences of tungsten doping on the behaviour of the material during electrochemical cycling was also investigated using operando XRD, showing reduced mechanical stress upon cycling. In conclusion, we will show that LiNiO 2 modified by W with a simple route and no additional processing steps exhibits structural stability at high temperatures, offering a path towards the reliable synthesis of LiNiO 2 with controlled morphology, improved chemomechanics and longer cycling life. Reference s : [1] Dahn et al., Structure and Electrochemistry of Li 1+-y NiO 2 and a New Li 2 NiO 2 Phase with the Ni(OH) 2 Structure, Solid State Ionics 1990 , 44 (1-2), 87-97. [2] Rougier et al., Optimization of the composition of the Li 1-z Ni 1+z O 2 electrode materials: Structural, magnetic, and electrochemical studies, Journal of the Electrochemical Society 1996, 143 (4), 1168-1175 [3] Bianchini et al., There and Back Again-The Journey of LiNiO 2 as a Cathode Active Material. Angew. Chem., Int. Ed. 2019 , 58, 10434−10458. [4] Kurzhals et al., The LiNiO 2 Cathode Active Material: A Comprehensive Study of Calcination Conditions and their Correlation with Physicochemical Properties. Part I. Structural Chemistry, Journal of the electrochemical society, 2021 , 168 (11) 110518. [5] Riewald et al., The LiNiO 2 Cathode Active Material: A Comprehensive Study of Calcination Conditions and their Correlation with Physicochemical Properties. Part II. Morphology, Journal of the electrochemical society, 2022 , 10.1149/1945-7111/ac4bf3 [6] Goonetilleke et al., Single step synthesis of W-modified LiNiO 2 using an ammonium tungstate flux, Journal of Materials Chemistry A 2022 , 10.1039.D1TA10568J. [7] Weber et al., Tracing Low Amounts of Mg in the Doped Cathode Active Material LiNiO 2 , Journal of the electrochemical society, 2022 , 10.1149/1945-7111/ac5b38.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leezz完成签到,获得积分10
刚刚
阿豪发布了新的文献求助10
1秒前
林由夕完成签到,获得积分20
2秒前
研友_5ZlY68发布了新的文献求助10
2秒前
fanny完成签到,获得积分10
4秒前
4秒前
7秒前
7秒前
7秒前
7秒前
传奇3应助满意元枫采纳,获得10
8秒前
fanny发布了新的文献求助10
8秒前
9秒前
hxh发布了新的文献求助10
10秒前
2105完成签到,获得积分10
10秒前
11秒前
谨慎的谷槐完成签到,获得积分10
11秒前
chuanxue发布了新的文献求助10
11秒前
来日方长发布了新的文献求助10
11秒前
公西凝芙发布了新的文献求助10
12秒前
FashionBoy应助执着柏柳采纳,获得10
13秒前
瘦瘦小萱完成签到 ,获得积分10
13秒前
Hello应助悟空采纳,获得30
14秒前
jy完成签到,获得积分10
14秒前
1234发布了新的文献求助10
15秒前
hxh完成签到,获得积分10
16秒前
17秒前
17秒前
工藤新一完成签到,获得积分10
18秒前
19秒前
19秒前
pengivy发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
端庄一刀发布了新的文献求助10
22秒前
22秒前
23秒前
研友_VZG7GZ应助公西凝芙采纳,获得10
23秒前
记得笑发布了新的文献求助10
25秒前
墨123完成签到,获得积分10
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606214
求助须知:如何正确求助?哪些是违规求助? 4690656
关于积分的说明 14864955
捐赠科研通 4704298
什么是DOI,文献DOI怎么找? 2542488
邀请新用户注册赠送积分活动 1508024
关于科研通互助平台的介绍 1472232