Recent Advances Towards Practical LiNiO2 Cathode Materials: Optimised Calcination and Modification with W Via a Single Step Synthesis Route

材料科学 煅烧 掺杂剂 化学工程 阴极 电化学 兴奋剂 结晶学 纳米技术 冶金 物理化学 化学 电极 光电子学 工程类 催化作用 生物化学
作者
Matteo Bianchini,Damian Goonetilleke,Daniel Weber,François Fauth,Yuan Ma,Andrey Mazilkin,Felix Riewald,Philipp Kurzhals,Heino Sommer,Hubert A. Gasteiger,Torsten Brezesinski,Jürgen Janek
出处
期刊:Meeting abstracts 卷期号:MA2022-02 (3): 285-285
标识
DOI:10.1149/ma2022-023285mtgabs
摘要

LiNiO 2 has been long considered as a promising cathode material owing to its high practical energy density [1,2]. However, structural and surface instabilities, coupled with complexities in the synthesis, have thus far prevented its commercialisation [3]. In this talk I will review our recent work towards the use of LiNiO 2 as an actual cathode solution, via carefully controlled calcination conditions [4,5] and stabilization especially in terms of elemental substitution (doping) [6,7], but also of protective surface coating. To address issues with the material’s stability during synthesis and cycling, the use of an ammonium tungstate flux to modify both the LiNiO 2 crystal structure and primary particle morphology without introducing additional steps into the synthesis will be discussed here in particular detail. The successful preparation of LiNiO 2 modified with an industrially relevant amount of W (< 5 mol %) was confirmed using a combination of electron microscopy and synchrotron-based X-ray diffraction (XRD). Refinement of structural models against the data suggests tungsten dopant ions occupy the Ni site and concurrently induce migration of Ni 2+ to the Li sites. Moreover, W enrichment at grain boundaries has been observed under some of the synthesis conditions. Variable temperature XRD was used to highlight the improved stability of the W-doped materials during the calcination at high temperatures. Electrochemical characterisation shows that W-doped LiNiO 2 offers improved cycle life at the expense of little specific capacity. The structural consequences of tungsten doping on the behaviour of the material during electrochemical cycling was also investigated using operando XRD, showing reduced mechanical stress upon cycling. In conclusion, we will show that LiNiO 2 modified by W with a simple route and no additional processing steps exhibits structural stability at high temperatures, offering a path towards the reliable synthesis of LiNiO 2 with controlled morphology, improved chemomechanics and longer cycling life. Reference s : [1] Dahn et al., Structure and Electrochemistry of Li 1+-y NiO 2 and a New Li 2 NiO 2 Phase with the Ni(OH) 2 Structure, Solid State Ionics 1990 , 44 (1-2), 87-97. [2] Rougier et al., Optimization of the composition of the Li 1-z Ni 1+z O 2 electrode materials: Structural, magnetic, and electrochemical studies, Journal of the Electrochemical Society 1996, 143 (4), 1168-1175 [3] Bianchini et al., There and Back Again-The Journey of LiNiO 2 as a Cathode Active Material. Angew. Chem., Int. Ed. 2019 , 58, 10434−10458. [4] Kurzhals et al., The LiNiO 2 Cathode Active Material: A Comprehensive Study of Calcination Conditions and their Correlation with Physicochemical Properties. Part I. Structural Chemistry, Journal of the electrochemical society, 2021 , 168 (11) 110518. [5] Riewald et al., The LiNiO 2 Cathode Active Material: A Comprehensive Study of Calcination Conditions and their Correlation with Physicochemical Properties. Part II. Morphology, Journal of the electrochemical society, 2022 , 10.1149/1945-7111/ac4bf3 [6] Goonetilleke et al., Single step synthesis of W-modified LiNiO 2 using an ammonium tungstate flux, Journal of Materials Chemistry A 2022 , 10.1039.D1TA10568J. [7] Weber et al., Tracing Low Amounts of Mg in the Doped Cathode Active Material LiNiO 2 , Journal of the electrochemical society, 2022 , 10.1149/1945-7111/ac5b38.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蒹葭苍苍完成签到,获得积分10
刚刚
池鱼完成签到,获得积分10
1秒前
JamesPei应助UMA采纳,获得10
1秒前
研友_VZG7GZ应助南山无梅落采纳,获得10
2秒前
灌肠高手完成签到,获得积分20
3秒前
ED应助友好的寒云采纳,获得20
4秒前
wu8577应助科研通管家采纳,获得15
4秒前
4秒前
4秒前
4秒前
4秒前
爆米花应助科研通管家采纳,获得30
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
yy发布了新的文献求助10
4秒前
sstargazer完成签到,获得积分10
5秒前
Jaden完成签到,获得积分10
6秒前
Parotodus完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
8秒前
友好故事关注了科研通微信公众号
11秒前
UMA完成签到,获得积分10
12秒前
抑郁小鼠解剖家完成签到,获得积分10
13秒前
14秒前
15秒前
萘GAN发布了新的文献求助10
15秒前
15秒前
潘票完成签到 ,获得积分10
16秒前
张琳琳发布了新的文献求助10
16秒前
18秒前
yy完成签到,获得积分10
19秒前
狄扬发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
bean完成签到,获得积分10
22秒前
友好故事发布了新的文献求助10
23秒前
ding应助萘GAN采纳,获得10
23秒前
23秒前
Janus完成签到,获得积分10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969884
求助须知:如何正确求助?哪些是违规求助? 3514604
关于积分的说明 11174901
捐赠科研通 3249928
什么是DOI,文献DOI怎么找? 1795149
邀请新用户注册赠送积分活动 875599
科研通“疑难数据库(出版商)”最低求助积分说明 804891