3DUNetGSFormer: A deep learning pipeline for complex wetland mapping using generative adversarial networks and Swin transformer

深度学习 计算机科学 人工智能 卷积神经网络 湿地 机器学习 分类器(UML) 基本事实 遥感 生态学 地理 生物
作者
Ali Jamali,Masoud Mahdianpari,Brian Brisco,Dehua Mao,Bahram Salehi,Fariba Mohammadimanesh
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:72: 101904-101904 被引量:26
标识
DOI:10.1016/j.ecoinf.2022.101904
摘要

Many ecosystems, particularly wetlands, are significantly degraded or lost as a result of climate change and anthropogenic activities. Simultaneously, developments in machine learning, particularly deep learning methods, have greatly improved wetland mapping, which is a critical step in ecosystem monitoring. Yet, present deep and very deep models necessitate a greater number of training data, which are costly, logistically challenging, and time-consuming to acquire. Thus, we explore and address the potential and possible limitations caused by the availability of limited ground-truth data for large-scale wetland mapping. To overcome this persistent problem for remote sensing data classification using deep learning models, we propose 3D UNet Generative Adversarial Network Swin Transformer (3DUNetGSFormer) to adaptively synthesize wetland training data based on each class's data availability. Both real and synthesized training data are then imported to a novel deep learning architecture consisting of cutting-edge Convolutional Neural Networks and vision transformers for wetland mapping. Results demonstrated that the developed wetland classifier obtained a high level of kappa coefficient, average accuracy, and overall accuracy of 96.99%, 97.13%, and 97.39%, respectively, for the data in three pilot sites in and around Grand Falls-Windsor, Avalon, and Gros Morne National Park located in Canada. The results show that the proposed methodology opens a new window for future high-quality wetland data generation and classification. The developed codes are available at https://github.com/aj1365/3DUNetGSFormer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胍基完成签到,获得积分10
2秒前
2秒前
4秒前
dingmeijia给dingmeijia的求助进行了留言
4秒前
6秒前
8秒前
烦烦完成签到,获得积分10
8秒前
尔池发布了新的文献求助10
9秒前
orixero应助upupup采纳,获得10
9秒前
9秒前
syh完成签到,获得积分10
9秒前
9秒前
一只百味鸡完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
欣喜书易完成签到 ,获得积分10
10秒前
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得80
10秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
小杭76应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得30
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
11秒前
彭于晏应助科研通管家采纳,获得10
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
田様应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289127
求助须知:如何正确求助?哪些是违规求助? 4440879
关于积分的说明 13825797
捐赠科研通 4323161
什么是DOI,文献DOI怎么找? 2372993
邀请新用户注册赠送积分活动 1368430
关于科研通互助平台的介绍 1332352