清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

3DUNetGSFormer: A deep learning pipeline for complex wetland mapping using generative adversarial networks and Swin transformer

深度学习 计算机科学 人工智能 卷积神经网络 湿地 机器学习 分类器(UML) 基本事实 遥感 生态学 地理 生物
作者
Ali Jamali,Masoud Mahdianpari,Brian Brisco,Dehua Mao,Bahram Salehi,Fariba Mohammadimanesh
出处
期刊:Ecological Informatics [Elsevier]
卷期号:72: 101904-101904 被引量:26
标识
DOI:10.1016/j.ecoinf.2022.101904
摘要

Many ecosystems, particularly wetlands, are significantly degraded or lost as a result of climate change and anthropogenic activities. Simultaneously, developments in machine learning, particularly deep learning methods, have greatly improved wetland mapping, which is a critical step in ecosystem monitoring. Yet, present deep and very deep models necessitate a greater number of training data, which are costly, logistically challenging, and time-consuming to acquire. Thus, we explore and address the potential and possible limitations caused by the availability of limited ground-truth data for large-scale wetland mapping. To overcome this persistent problem for remote sensing data classification using deep learning models, we propose 3D UNet Generative Adversarial Network Swin Transformer (3DUNetGSFormer) to adaptively synthesize wetland training data based on each class's data availability. Both real and synthesized training data are then imported to a novel deep learning architecture consisting of cutting-edge Convolutional Neural Networks and vision transformers for wetland mapping. Results demonstrated that the developed wetland classifier obtained a high level of kappa coefficient, average accuracy, and overall accuracy of 96.99%, 97.13%, and 97.39%, respectively, for the data in three pilot sites in and around Grand Falls-Windsor, Avalon, and Gros Morne National Park located in Canada. The results show that the proposed methodology opens a new window for future high-quality wetland data generation and classification. The developed codes are available at https://github.com/aj1365/3DUNetGSFormer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吱吱完成签到,获得积分10
4秒前
高高从霜完成签到 ,获得积分10
40秒前
领导范儿应助科研通管家采纳,获得10
1分钟前
坚强紫山完成签到,获得积分10
1分钟前
xiaowangwang完成签到 ,获得积分10
1分钟前
鲤鱼山人完成签到 ,获得积分10
1分钟前
V_I_G完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
jiang发布了新的文献求助10
2分钟前
文献属于所有科研人完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
可爱沛蓝完成签到 ,获得积分10
2分钟前
jiang完成签到 ,获得积分10
2分钟前
无情的踏歌应助bc采纳,获得300
3分钟前
无情的踏歌应助白华苍松采纳,获得20
3分钟前
科研啄木鸟完成签到 ,获得积分10
3分钟前
ceeray23发布了新的文献求助20
4分钟前
1437594843完成签到 ,获得积分10
4分钟前
安青兰完成签到 ,获得积分10
4分钟前
orixero应助科研通管家采纳,获得10
5分钟前
cheng完成签到,获得积分10
5分钟前
面汤完成签到 ,获得积分10
5分钟前
soilbeginner应助ceeray23采纳,获得20
5分钟前
852应助烂漫念文采纳,获得10
5分钟前
晴莹完成签到 ,获得积分10
5分钟前
NexusExplorer应助ceeray23采纳,获得20
5分钟前
无情的踏歌应助白华苍松采纳,获得20
5分钟前
薛家泰完成签到 ,获得积分10
5分钟前
Boren完成签到,获得积分10
5分钟前
肥肥完成签到 ,获得积分10
5分钟前
allrubbish完成签到,获得积分10
5分钟前
坚强紫山发布了新的文献求助20
6分钟前
6分钟前
ceeray23发布了新的文献求助20
6分钟前
山楂完成签到,获得积分10
6分钟前
充电宝应助科研通管家采纳,获得10
6分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584778
求助须知:如何正确求助?哪些是违规求助? 4668667
关于积分的说明 14771569
捐赠科研通 4614358
什么是DOI,文献DOI怎么找? 2530220
邀请新用户注册赠送积分活动 1499084
关于科研通互助平台的介绍 1467531