3DUNetGSFormer: A deep learning pipeline for complex wetland mapping using generative adversarial networks and Swin transformer

深度学习 计算机科学 人工智能 卷积神经网络 湿地 机器学习 分类器(UML) 基本事实 遥感 生态学 地理 生物
作者
Ali Jamali,Masoud Mahdianpari,Brian Brisco,Dehua Mao,Bahram Salehi,Fariba Mohammadimanesh
出处
期刊:Ecological Informatics [Elsevier]
卷期号:72: 101904-101904 被引量:26
标识
DOI:10.1016/j.ecoinf.2022.101904
摘要

Many ecosystems, particularly wetlands, are significantly degraded or lost as a result of climate change and anthropogenic activities. Simultaneously, developments in machine learning, particularly deep learning methods, have greatly improved wetland mapping, which is a critical step in ecosystem monitoring. Yet, present deep and very deep models necessitate a greater number of training data, which are costly, logistically challenging, and time-consuming to acquire. Thus, we explore and address the potential and possible limitations caused by the availability of limited ground-truth data for large-scale wetland mapping. To overcome this persistent problem for remote sensing data classification using deep learning models, we propose 3D UNet Generative Adversarial Network Swin Transformer (3DUNetGSFormer) to adaptively synthesize wetland training data based on each class's data availability. Both real and synthesized training data are then imported to a novel deep learning architecture consisting of cutting-edge Convolutional Neural Networks and vision transformers for wetland mapping. Results demonstrated that the developed wetland classifier obtained a high level of kappa coefficient, average accuracy, and overall accuracy of 96.99%, 97.13%, and 97.39%, respectively, for the data in three pilot sites in and around Grand Falls-Windsor, Avalon, and Gros Morne National Park located in Canada. The results show that the proposed methodology opens a new window for future high-quality wetland data generation and classification. The developed codes are available at https://github.com/aj1365/3DUNetGSFormer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
先生范发布了新的文献求助10
刚刚
寒树发布了新的文献求助10
刚刚
xjn完成签到,获得积分10
刚刚
1秒前
CCC完成签到,获得积分10
1秒前
Jasper应助医院的孩子采纳,获得10
2秒前
nchudddd发布了新的文献求助10
2秒前
3秒前
hzh666完成签到,获得积分20
3秒前
王敬顺发布了新的文献求助10
3秒前
xx1发布了新的文献求助10
3秒前
Artin_Sun完成签到,获得积分10
6秒前
6秒前
华仔应助岳维芸采纳,获得10
6秒前
烟花应助岳维芸采纳,获得10
6秒前
yiyi完成签到,获得积分20
7秒前
杨二锤发布了新的文献求助10
7秒前
8秒前
8秒前
所所应助张巨锋采纳,获得10
9秒前
蓝天应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
李健应助科研通管家采纳,获得10
9秒前
9秒前
Wind应助科研通管家采纳,获得10
9秒前
9秒前
情怀应助科研通管家采纳,获得10
9秒前
litt应助科研通管家采纳,获得10
9秒前
9秒前
香蕉诗蕊应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
香蕉诗蕊应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
9秒前
李健的小迷弟应助金肆采纳,获得10
10秒前
11发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
可爱的函函应助gdh采纳,获得10
11秒前
11秒前
橘子发布了新的文献求助10
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233