3DUNetGSFormer: A deep learning pipeline for complex wetland mapping using generative adversarial networks and Swin transformer

深度学习 计算机科学 人工智能 卷积神经网络 湿地 机器学习 分类器(UML) 基本事实 遥感 生态学 地理 生物
作者
Ali Jamali,Masoud Mahdianpari,Brian Brisco,Dehua Mao,Bahram Salehi,Fariba Mohammadimanesh
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:72: 101904-101904 被引量:26
标识
DOI:10.1016/j.ecoinf.2022.101904
摘要

Many ecosystems, particularly wetlands, are significantly degraded or lost as a result of climate change and anthropogenic activities. Simultaneously, developments in machine learning, particularly deep learning methods, have greatly improved wetland mapping, which is a critical step in ecosystem monitoring. Yet, present deep and very deep models necessitate a greater number of training data, which are costly, logistically challenging, and time-consuming to acquire. Thus, we explore and address the potential and possible limitations caused by the availability of limited ground-truth data for large-scale wetland mapping. To overcome this persistent problem for remote sensing data classification using deep learning models, we propose 3D UNet Generative Adversarial Network Swin Transformer (3DUNetGSFormer) to adaptively synthesize wetland training data based on each class's data availability. Both real and synthesized training data are then imported to a novel deep learning architecture consisting of cutting-edge Convolutional Neural Networks and vision transformers for wetland mapping. Results demonstrated that the developed wetland classifier obtained a high level of kappa coefficient, average accuracy, and overall accuracy of 96.99%, 97.13%, and 97.39%, respectively, for the data in three pilot sites in and around Grand Falls-Windsor, Avalon, and Gros Morne National Park located in Canada. The results show that the proposed methodology opens a new window for future high-quality wetland data generation and classification. The developed codes are available at https://github.com/aj1365/3DUNetGSFormer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研通AI6应助chunjianghua采纳,获得10
2秒前
JIAO发布了新的文献求助30
3秒前
jia发布了新的文献求助10
3秒前
4秒前
三川发布了新的文献求助10
4秒前
4秒前
爆米花应助過客采纳,获得10
4秒前
5秒前
5秒前
Kannan发布了新的文献求助10
5秒前
6秒前
六一发布了新的文献求助10
6秒前
6秒前
7秒前
xqq发布了新的文献求助10
8秒前
daguan完成签到,获得积分10
8秒前
9秒前
聪明皮带发布了新的文献求助10
10秒前
10秒前
10秒前
hf发布了新的文献求助10
10秒前
upupup发布了新的文献求助10
11秒前
11秒前
笑得开心完成签到,获得积分10
11秒前
11秒前
狐子完成签到,获得积分10
11秒前
无我发布了新的文献求助10
12秒前
JIAO完成签到,获得积分10
13秒前
三川完成签到,获得积分10
14秒前
14秒前
cbp560完成签到,获得积分10
14秒前
安全平静发布了新的文献求助10
14秒前
xqq完成签到,获得积分10
14秒前
隐形的冰海完成签到,获得积分10
15秒前
16秒前
lei发布了新的文献求助10
16秒前
17秒前
遇上就这样吧应助newplayer采纳,获得50
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4558489
求助须知:如何正确求助?哪些是违规求助? 3985507
关于积分的说明 12338928
捐赠科研通 3655887
什么是DOI,文献DOI怎么找? 2014038
邀请新用户注册赠送积分活动 1048872
科研通“疑难数据库(出版商)”最低求助积分说明 937242