亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

3DUNetGSFormer: A deep learning pipeline for complex wetland mapping using generative adversarial networks and Swin transformer

深度学习 计算机科学 人工智能 卷积神经网络 湿地 机器学习 分类器(UML) 基本事实 遥感 生态学 地理 生物
作者
Ali Jamali,Masoud Mahdianpari,Brian Brisco,Dehua Mao,Bahram Salehi,Fariba Mohammadimanesh
出处
期刊:Ecological Informatics [Elsevier]
卷期号:72: 101904-101904 被引量:26
标识
DOI:10.1016/j.ecoinf.2022.101904
摘要

Many ecosystems, particularly wetlands, are significantly degraded or lost as a result of climate change and anthropogenic activities. Simultaneously, developments in machine learning, particularly deep learning methods, have greatly improved wetland mapping, which is a critical step in ecosystem monitoring. Yet, present deep and very deep models necessitate a greater number of training data, which are costly, logistically challenging, and time-consuming to acquire. Thus, we explore and address the potential and possible limitations caused by the availability of limited ground-truth data for large-scale wetland mapping. To overcome this persistent problem for remote sensing data classification using deep learning models, we propose 3D UNet Generative Adversarial Network Swin Transformer (3DUNetGSFormer) to adaptively synthesize wetland training data based on each class's data availability. Both real and synthesized training data are then imported to a novel deep learning architecture consisting of cutting-edge Convolutional Neural Networks and vision transformers for wetland mapping. Results demonstrated that the developed wetland classifier obtained a high level of kappa coefficient, average accuracy, and overall accuracy of 96.99%, 97.13%, and 97.39%, respectively, for the data in three pilot sites in and around Grand Falls-Windsor, Avalon, and Gros Morne National Park located in Canada. The results show that the proposed methodology opens a new window for future high-quality wetland data generation and classification. The developed codes are available at https://github.com/aj1365/3DUNetGSFormer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
圆圆完成签到 ,获得积分10
13秒前
Criminology34应助科研通管家采纳,获得10
19秒前
Criminology34应助科研通管家采纳,获得10
25秒前
上官若男应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
Criminology34应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
ding应助科研通管家采纳,获得10
25秒前
Criminology34应助科研通管家采纳,获得10
25秒前
冬冬完成签到,获得积分10
30秒前
粽子完成签到,获得积分10
31秒前
45秒前
Kathy发布了新的文献求助10
50秒前
科研肥料发布了新的文献求助10
51秒前
科研肥料完成签到,获得积分10
57秒前
1分钟前
Kathy完成签到,获得积分10
1分钟前
1分钟前
转转发布了新的文献求助10
1分钟前
xmsyq完成签到 ,获得积分10
1分钟前
李健应助嘟嘟嘟嘟采纳,获得10
1分钟前
2分钟前
嘟嘟嘟嘟发布了新的文献求助10
2分钟前
2分钟前
2分钟前
科研通AI2S应助嘟嘟嘟嘟采纳,获得10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
2分钟前
领导范儿应助111采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764216
求助须知:如何正确求助?哪些是违规求助? 5549135
关于积分的说明 15405999
捐赠科研通 4899537
什么是DOI,文献DOI怎么找? 2635744
邀请新用户注册赠送积分活动 1583892
关于科研通互助平台的介绍 1539034