3DUNetGSFormer: A deep learning pipeline for complex wetland mapping using generative adversarial networks and Swin transformer

深度学习 计算机科学 人工智能 卷积神经网络 湿地 机器学习 分类器(UML) 基本事实 遥感 生态学 地理 生物
作者
Ali Jamali,Masoud Mahdianpari,Brian Brisco,Dehua Mao,Bahram Salehi,Fariba Mohammadimanesh
出处
期刊:Ecological Informatics [Elsevier]
卷期号:72: 101904-101904 被引量:26
标识
DOI:10.1016/j.ecoinf.2022.101904
摘要

Many ecosystems, particularly wetlands, are significantly degraded or lost as a result of climate change and anthropogenic activities. Simultaneously, developments in machine learning, particularly deep learning methods, have greatly improved wetland mapping, which is a critical step in ecosystem monitoring. Yet, present deep and very deep models necessitate a greater number of training data, which are costly, logistically challenging, and time-consuming to acquire. Thus, we explore and address the potential and possible limitations caused by the availability of limited ground-truth data for large-scale wetland mapping. To overcome this persistent problem for remote sensing data classification using deep learning models, we propose 3D UNet Generative Adversarial Network Swin Transformer (3DUNetGSFormer) to adaptively synthesize wetland training data based on each class's data availability. Both real and synthesized training data are then imported to a novel deep learning architecture consisting of cutting-edge Convolutional Neural Networks and vision transformers for wetland mapping. Results demonstrated that the developed wetland classifier obtained a high level of kappa coefficient, average accuracy, and overall accuracy of 96.99%, 97.13%, and 97.39%, respectively, for the data in three pilot sites in and around Grand Falls-Windsor, Avalon, and Gros Morne National Park located in Canada. The results show that the proposed methodology opens a new window for future high-quality wetland data generation and classification. The developed codes are available at https://github.com/aj1365/3DUNetGSFormer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿七完成签到,获得积分10
1秒前
徐赟发布了新的文献求助10
1秒前
星期八发布了新的文献求助10
2秒前
3秒前
小小狗完成签到,获得积分10
3秒前
不要讨好十三完成签到,获得积分10
4秒前
zewangguo发布了新的文献求助10
4秒前
5秒前
6秒前
rpe发布了新的文献求助10
7秒前
7秒前
ding应助童修洁采纳,获得10
7秒前
852应助11采纳,获得10
8秒前
时若完成签到,获得积分10
8秒前
NexusExplorer应助cc2001采纳,获得10
9秒前
KiligStitch发布了新的文献求助10
9秒前
9秒前
鲤鱼凡霜发布了新的文献求助10
10秒前
Cherry完成签到,获得积分10
11秒前
万能图书馆应助ww采纳,获得10
12秒前
12秒前
12秒前
Zhaobin完成签到,获得积分10
12秒前
韦一宁发布了新的文献求助10
12秒前
斯文的清发布了新的文献求助10
13秒前
14秒前
qiaoshan_Jason完成签到,获得积分10
15秒前
林梦婷完成签到,获得积分10
16秒前
Nimiy完成签到,获得积分10
16秒前
MintCoffeeCat发布了新的文献求助10
17秒前
18秒前
18秒前
19秒前
CipherSage应助平淡的乐曲采纳,获得10
20秒前
21秒前
cc2001发布了新的文献求助10
22秒前
zewangguo发布了新的文献求助10
22秒前
童修洁发布了新的文献求助10
23秒前
23秒前
日富一日完成签到 ,获得积分10
27秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3489162
求助须知:如何正确求助?哪些是违规求助? 3076508
关于积分的说明 9145530
捐赠科研通 2768751
什么是DOI,文献DOI怎么找? 1519398
邀请新用户注册赠送积分活动 703805
科研通“疑难数据库(出版商)”最低求助积分说明 702009