3DUNetGSFormer: A deep learning pipeline for complex wetland mapping using generative adversarial networks and Swin transformer

深度学习 计算机科学 人工智能 卷积神经网络 湿地 机器学习 分类器(UML) 基本事实 遥感 生态学 地理 生物
作者
Ali Jamali,Masoud Mahdianpari,Brian Brisco,Dehua Mao,Bahram Salehi,Fariba Mohammadimanesh
出处
期刊:Ecological Informatics [Elsevier]
卷期号:72: 101904-101904 被引量:26
标识
DOI:10.1016/j.ecoinf.2022.101904
摘要

Many ecosystems, particularly wetlands, are significantly degraded or lost as a result of climate change and anthropogenic activities. Simultaneously, developments in machine learning, particularly deep learning methods, have greatly improved wetland mapping, which is a critical step in ecosystem monitoring. Yet, present deep and very deep models necessitate a greater number of training data, which are costly, logistically challenging, and time-consuming to acquire. Thus, we explore and address the potential and possible limitations caused by the availability of limited ground-truth data for large-scale wetland mapping. To overcome this persistent problem for remote sensing data classification using deep learning models, we propose 3D UNet Generative Adversarial Network Swin Transformer (3DUNetGSFormer) to adaptively synthesize wetland training data based on each class's data availability. Both real and synthesized training data are then imported to a novel deep learning architecture consisting of cutting-edge Convolutional Neural Networks and vision transformers for wetland mapping. Results demonstrated that the developed wetland classifier obtained a high level of kappa coefficient, average accuracy, and overall accuracy of 96.99%, 97.13%, and 97.39%, respectively, for the data in three pilot sites in and around Grand Falls-Windsor, Avalon, and Gros Morne National Park located in Canada. The results show that the proposed methodology opens a new window for future high-quality wetland data generation and classification. The developed codes are available at https://github.com/aj1365/3DUNetGSFormer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时光机带哥走完成签到 ,获得积分10
1秒前
温柔柜子发布了新的文献求助10
2秒前
2秒前
Ava应助AGRA采纳,获得10
3秒前
RC_Wang应助丫丫采纳,获得10
3秒前
3秒前
丞相完成签到,获得积分10
4秒前
喵喵完成签到 ,获得积分10
4秒前
能干的小赵完成签到,获得积分10
4秒前
hchnb1234完成签到,获得积分10
4秒前
5秒前
6秒前
hchnb1234发布了新的文献求助10
7秒前
林云夕完成签到,获得积分10
7秒前
8秒前
HesperLxy发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
10秒前
林云夕发布了新的文献求助10
13秒前
RC_Wang应助丫丫采纳,获得10
13秒前
ericlee1984发布了新的文献求助10
14秒前
Owen应助一坨台台采纳,获得10
15秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
sheny1完成签到,获得积分10
18秒前
温柔柜子发布了新的文献求助10
19秒前
19秒前
科研通AI6.1应助李茉琳采纳,获得10
20秒前
郑泽航发布了新的文献求助10
20秒前
小蘑菇应助HBY采纳,获得10
20秒前
llf完成签到 ,获得积分10
21秒前
LX完成签到,获得积分10
21秒前
科研通AI6.1应助online1881采纳,获得10
21秒前
一坨台台完成签到,获得积分10
22秒前
22秒前
大力元霜完成签到,获得积分10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785393
求助须知:如何正确求助?哪些是违规求助? 5687580
关于积分的说明 15467396
捐赠科研通 4914484
什么是DOI,文献DOI怎么找? 2645216
邀请新用户注册赠送积分活动 1593054
关于科研通互助平台的介绍 1547382