清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Energy-efficient multi-pass cutting parameters optimisation for aviation parts in flank milling with deep reinforcement learning

参数统计 机械加工 变形(气象学) 强化学习 人工神经网络 能量(信号处理) 过程(计算) 侧面 航空 计算机科学 刚度 机械工程 高效能源利用 刀具 工程类 人工智能 结构工程 材料科学 数学 航空航天工程 电气工程 复合材料 社会学 操作系统 统计 人类学
作者
Fengyi Lu,Guanghui Zhou,Chao Zhang,Yang Liu,Fengtian Chang,Zhongdong Xiao
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier]
卷期号:81: 102488-102488 被引量:21
标识
DOI:10.1016/j.rcim.2022.102488
摘要

Cutting parameters play a major role in improving the energy efficiency of the manufacturing industry. As the main processing method for aviation parts, flank milling usually adopts multi-pass constant and conservative cutting parameters to prevent workpiece deformation but degrades energy efficiency. To address the issue, this paper proposes a novel multi-pass parametric optimisation based on deep reinforcement learning (DRL), allowing parameters to vary to boost energy efficiency under the changing deformation limits in each pass. Firstly, it designs a variable workpiece deformation const.raint on the principle of stiffness decreasing along the passes, based on which it constructs an energy-efficient parametric optimisation model, giving suitable decisions that respond to the varying cutting conditions. Secondly, it transforms the model into a Markov Decision Process and Soft Actor Critic is applied as the DRL agent to cope with the dynamics in multi-pass machining. Among them, an artificial neural network-enabled surrogate model is applied to approximate the real-world machining, facilitating enough explorations of DRL. Experimental results show that, compared with the conventional method, the proposed method improves 45.71% of material removal rate and 32.27% of specific cutting energy while meeting deformation tolerance, which substantiates the benefits of the energy-efficient parametric optimisation, significantly contributing to sustainable manufacturing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老石完成签到 ,获得积分10
22秒前
砰砰完成签到 ,获得积分10
56秒前
1分钟前
1分钟前
1分钟前
2分钟前
斯文败类应助joker采纳,获得10
2分钟前
2分钟前
sdjjis完成签到 ,获得积分10
2分钟前
joker发布了新的文献求助10
2分钟前
hwen1998完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
李健应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
4分钟前
曙光完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
研友_nxw2xL完成签到,获得积分10
4分钟前
muriel完成签到,获得积分0
4分钟前
如歌完成签到,获得积分10
4分钟前
5分钟前
披着羊皮的狼完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
蝎子莱莱xth完成签到,获得积分10
6分钟前
充电宝应助Barry采纳,获得10
6分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
6分钟前
Square完成签到,获得积分10
6分钟前
轻松戎发布了新的文献求助10
7分钟前
脑洞疼应助轻松戎采纳,获得10
7分钟前
7分钟前
7分钟前
勤奋的猫咪完成签到 ,获得积分10
7分钟前
8分钟前
zing完成签到,获得积分10
8分钟前
xxfsx应助zing采纳,获得10
8分钟前
默默完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418435
求助须知:如何正确求助?哪些是违规求助? 4534151
关于积分的说明 14143199
捐赠科研通 4450380
什么是DOI,文献DOI怎么找? 2441186
邀请新用户注册赠送积分活动 1432941
关于科研通互助平台的介绍 1410307