Energy-efficient multi-pass cutting parameters optimisation for aviation parts in flank milling with deep reinforcement learning

参数统计 机械加工 变形(气象学) 强化学习 人工神经网络 能量(信号处理) 过程(计算) 侧面 航空 计算机科学 刚度 机械工程 高效能源利用 刀具 工程类 人工智能 结构工程 材料科学 数学 航空航天工程 统计 电气工程 社会学 人类学 复合材料 操作系统
作者
Fengyi Lu,Guanghui Zhou,Chao Zhang,Yang Liu,Fengtian Chang,Zhongdong Xiao
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier]
卷期号:81: 102488-102488 被引量:21
标识
DOI:10.1016/j.rcim.2022.102488
摘要

Cutting parameters play a major role in improving the energy efficiency of the manufacturing industry. As the main processing method for aviation parts, flank milling usually adopts multi-pass constant and conservative cutting parameters to prevent workpiece deformation but degrades energy efficiency. To address the issue, this paper proposes a novel multi-pass parametric optimisation based on deep reinforcement learning (DRL), allowing parameters to vary to boost energy efficiency under the changing deformation limits in each pass. Firstly, it designs a variable workpiece deformation const.raint on the principle of stiffness decreasing along the passes, based on which it constructs an energy-efficient parametric optimisation model, giving suitable decisions that respond to the varying cutting conditions. Secondly, it transforms the model into a Markov Decision Process and Soft Actor Critic is applied as the DRL agent to cope with the dynamics in multi-pass machining. Among them, an artificial neural network-enabled surrogate model is applied to approximate the real-world machining, facilitating enough explorations of DRL. Experimental results show that, compared with the conventional method, the proposed method improves 45.71% of material removal rate and 32.27% of specific cutting energy while meeting deformation tolerance, which substantiates the benefits of the energy-efficient parametric optimisation, significantly contributing to sustainable manufacturing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Return应助科研通管家采纳,获得10
刚刚
积极的箴完成签到,获得积分10
刚刚
无极微光应助科研通管家采纳,获得20
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
pluto应助哒哒哒采纳,获得10
1秒前
1秒前
Momomo应助哒哒哒采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
无极微光应助科研通管家采纳,获得20
1秒前
淡定宛白完成签到,获得积分10
1秒前
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
Akim应助科研通管家采纳,获得10
1秒前
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
手帕很忙发布了新的文献求助30
1秒前
寻道图强应助66采纳,获得50
2秒前
2秒前
温馨发布了新的文献求助10
3秒前
wink完成签到 ,获得积分10
3秒前
fu发布了新的文献求助10
3秒前
小贾发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277