Urban road traffic flow prediction: A graph convolutional network embedded with wavelet decomposition and attention mechanism

计算机科学 流量(计算机网络) 机制(生物学) 小波 图形 分解 人工智能 计算机网络 理论计算机科学 生态学 生物 认识论 哲学
作者
Yan Zheng,Shengyou Wang,Chunjiao Dong,Wenquan Li,Wen Zheng,Jingcai Yu
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier]
卷期号:608: 128274-128274
标识
DOI:10.1016/j.physa.2022.128274
摘要

Urban road traffic flow prediction is the key basis for the development of Intelligent Transportation System. The complex urban structure leads to irregular shape and layout of the road network, which poses a challenge to capture the spatio-temporal correlation of traffic flow at different nodes in the region. In this study, a graph convolutional network model framework embedded with wavelet decomposition and attention mechanism (WDA-GCN) is proposed to predict the traffic flow of each traffic monitor at the regional level by exploring the spatio-temporal correlation among traffic monitors. Specifically, the spatial correlation between different monitors is encoded into two graphs by Graph Convolutional Network (GCN): geographical neighbor graph and functional similarity graph. The Gated Recurrent Unit (GRU) is used to learn the spatial features extracted by GCN, and the attention mechanism is added to improve the prediction accuracy. Finally, the time series data and spatio-temporal correlation of traffic flow are input into the encoder–decoder based on GRU to realize regional traffic flow prediction. The model is validated and compared with the real traffic monitor data in Daxing District of Beijing, China, and the results show that the prediction accuracy of WDA-GCN model can reach 81.03% after embedding wavelet decomposition and attention mechanism, which is better than the traditional time series prediction methods and deep learning methods. • A data spatio-temporal architecture method based on WD and DTW is proposed. • A two-layer GCN model is proposed to analyze the spatial correlation between each traffic monitor. • A GRU structure combined with attention mechanism is proposed to capture temporal characteristics. • Using the encoder–decoder structure, we realize the multi-step prediction of traffic flow at all traffic monitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
烟花应助科研通管家采纳,获得30
2秒前
2秒前
大个应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
牟白容发布了新的文献求助10
2秒前
科目三应助雪雪子哇采纳,获得10
3秒前
4秒前
梁羽生发布了新的文献求助10
6秒前
Ada爰完成签到,获得积分10
6秒前
6秒前
阿晴发布了新的文献求助10
7秒前
牟白容完成签到,获得积分10
8秒前
9秒前
10秒前
BCS完成签到,获得积分10
11秒前
Aura完成签到,获得积分10
12秒前
领导范儿应助fantasy采纳,获得500
14秒前
16秒前
17秒前
17秒前
张三完成签到,获得积分10
18秒前
chuhong完成签到 ,获得积分10
19秒前
20秒前
Ada爰发布了新的文献求助10
21秒前
duli发布了新的文献求助10
21秒前
21秒前
Chao完成签到,获得积分20
22秒前
辰风完成签到,获得积分10
23秒前
领导范儿应助正直凌文采纳,获得10
24秒前
bkagyin应助困得想薯采纳,获得30
26秒前
guaner发布了新的文献求助10
26秒前
27秒前
genomed应助喵誉玉采纳,获得10
27秒前
只爱吃肠粉完成签到,获得积分10
27秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155971
求助须知:如何正确求助?哪些是违规求助? 2807318
关于积分的说明 7872715
捐赠科研通 2465696
什么是DOI,文献DOI怎么找? 1312291
科研通“疑难数据库(出版商)”最低求助积分说明 630049
版权声明 601905