Urban road traffic flow prediction: A graph convolutional network embedded with wavelet decomposition and attention mechanism

计算机科学 流量(计算机网络) 机制(生物学) 小波 图形 分解 人工智能 计算机网络 理论计算机科学 生态学 生物 认识论 哲学
作者
Yan Zheng,Shengyou Wang,Chunjiao Dong,Wenquan Li,Wen Zheng,Jingcai Yu
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier]
卷期号:608: 128274-128274
标识
DOI:10.1016/j.physa.2022.128274
摘要

Urban road traffic flow prediction is the key basis for the development of Intelligent Transportation System. The complex urban structure leads to irregular shape and layout of the road network, which poses a challenge to capture the spatio-temporal correlation of traffic flow at different nodes in the region. In this study, a graph convolutional network model framework embedded with wavelet decomposition and attention mechanism (WDA-GCN) is proposed to predict the traffic flow of each traffic monitor at the regional level by exploring the spatio-temporal correlation among traffic monitors. Specifically, the spatial correlation between different monitors is encoded into two graphs by Graph Convolutional Network (GCN): geographical neighbor graph and functional similarity graph. The Gated Recurrent Unit (GRU) is used to learn the spatial features extracted by GCN, and the attention mechanism is added to improve the prediction accuracy. Finally, the time series data and spatio-temporal correlation of traffic flow are input into the encoder–decoder based on GRU to realize regional traffic flow prediction. The model is validated and compared with the real traffic monitor data in Daxing District of Beijing, China, and the results show that the prediction accuracy of WDA-GCN model can reach 81.03% after embedding wavelet decomposition and attention mechanism, which is better than the traditional time series prediction methods and deep learning methods. • A data spatio-temporal architecture method based on WD and DTW is proposed. • A two-layer GCN model is proposed to analyze the spatial correlation between each traffic monitor. • A GRU structure combined with attention mechanism is proposed to capture temporal characteristics. • Using the encoder–decoder structure, we realize the multi-step prediction of traffic flow at all traffic monitors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助无辜的谷雪采纳,获得10
2秒前
3秒前
3秒前
852应助你嵙这个期刊没买采纳,获得10
3秒前
3秒前
3秒前
3秒前
Owen应助你嵙这个期刊没买采纳,获得10
3秒前
3秒前
3秒前
3秒前
我要吃鱼发布了新的文献求助10
5秒前
简单的傲玉完成签到,获得积分20
5秒前
激动的项链完成签到,获得积分10
6秒前
6秒前
LuckyM发布了新的文献求助10
7秒前
7秒前
干净的冷安完成签到,获得积分10
8秒前
lynn221204发布了新的文献求助10
8秒前
8秒前
9秒前
11秒前
11秒前
12秒前
科研通AI6应助wait采纳,获得10
12秒前
呱呱完成签到 ,获得积分10
12秒前
eno1009发布了新的文献求助20
13秒前
如意蚂蚁完成签到,获得积分10
15秒前
15秒前
乘风破浪发布了新的文献求助10
16秒前
CHUANSHUIRUYUN完成签到,获得积分10
16秒前
18秒前
凯少完成签到 ,获得积分10
18秒前
zuo完成签到,获得积分10
19秒前
完美世界应助DXL采纳,获得10
20秒前
21秒前
dzdzzzzzzzzzz发布了新的文献求助10
22秒前
Stella应助隐形的凡阳采纳,获得10
23秒前
浮游应助科研大王采纳,获得10
23秒前
维奈克拉应助粒粒采纳,获得20
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557486
求助须知:如何正确求助?哪些是违规求助? 4642578
关于积分的说明 14668531
捐赠科研通 4583986
什么是DOI,文献DOI怎么找? 2514487
邀请新用户注册赠送积分活动 1488830
关于科研通互助平台的介绍 1459454