Urban road traffic flow prediction: A graph convolutional network embedded with wavelet decomposition and attention mechanism

计算机科学 流量(计算机网络) 机制(生物学) 小波 图形 分解 人工智能 计算机网络 理论计算机科学 生态学 生物 认识论 哲学
作者
Yan Zheng,Shengyou Wang,Chunjiao Dong,Wenquan Li,Wen Zheng,Jingcai Yu
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier BV]
卷期号:608: 128274-128274
标识
DOI:10.1016/j.physa.2022.128274
摘要

Urban road traffic flow prediction is the key basis for the development of Intelligent Transportation System. The complex urban structure leads to irregular shape and layout of the road network, which poses a challenge to capture the spatio-temporal correlation of traffic flow at different nodes in the region. In this study, a graph convolutional network model framework embedded with wavelet decomposition and attention mechanism (WDA-GCN) is proposed to predict the traffic flow of each traffic monitor at the regional level by exploring the spatio-temporal correlation among traffic monitors. Specifically, the spatial correlation between different monitors is encoded into two graphs by Graph Convolutional Network (GCN): geographical neighbor graph and functional similarity graph. The Gated Recurrent Unit (GRU) is used to learn the spatial features extracted by GCN, and the attention mechanism is added to improve the prediction accuracy. Finally, the time series data and spatio-temporal correlation of traffic flow are input into the encoder–decoder based on GRU to realize regional traffic flow prediction. The model is validated and compared with the real traffic monitor data in Daxing District of Beijing, China, and the results show that the prediction accuracy of WDA-GCN model can reach 81.03% after embedding wavelet decomposition and attention mechanism, which is better than the traditional time series prediction methods and deep learning methods. • A data spatio-temporal architecture method based on WD and DTW is proposed. • A two-layer GCN model is proposed to analyze the spatial correlation between each traffic monitor. • A GRU structure combined with attention mechanism is proposed to capture temporal characteristics. • Using the encoder–decoder structure, we realize the multi-step prediction of traffic flow at all traffic monitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡志飞发布了新的文献求助10
刚刚
pizazz关注了科研通微信公众号
1秒前
yznfly应助方柯采纳,获得30
1秒前
豆豆完成签到,获得积分10
2秒前
小巧强炫发布了新的文献求助10
2秒前
小团子完成签到 ,获得积分10
3秒前
打打应助璨澄采纳,获得10
3秒前
田様应助现代子默采纳,获得10
4秒前
4秒前
4秒前
哈哈完成签到 ,获得积分10
4秒前
Alina关注了科研通微信公众号
5秒前
6秒前
豆豆发布了新的文献求助10
6秒前
8秒前
神勇寄松完成签到,获得积分10
8秒前
果茶去冰完成签到 ,获得积分10
8秒前
Jasper应助从容的灭绝采纳,获得10
8秒前
flymove发布了新的文献求助10
8秒前
baiquanci发布了新的文献求助10
8秒前
9秒前
隐形曼青应助higgs采纳,获得10
9秒前
KKKK发布了新的文献求助10
9秒前
彭于晏应助小团子采纳,获得10
9秒前
大脑袋完成签到,获得积分0
10秒前
10秒前
今后应助故意的鼠标采纳,获得10
11秒前
李健应助小余同学采纳,获得10
11秒前
顾矜应助欢喜的跳跳糖采纳,获得30
12秒前
yunsww发布了新的文献求助10
13秒前
14秒前
bai发布了新的文献求助10
14秒前
15秒前
望北楼主发布了新的文献求助10
15秒前
无花果应助iNk采纳,获得10
15秒前
胡志飞完成签到,获得积分20
16秒前
16秒前
zorofu5完成签到,获得积分10
16秒前
Qiao完成签到,获得积分10
17秒前
上官若男应助浅色墨水采纳,获得10
18秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962022
求助须知:如何正确求助?哪些是违规求助? 3508316
关于积分的说明 11140304
捐赠科研通 3240919
什么是DOI,文献DOI怎么找? 1791125
邀请新用户注册赠送积分活动 872741
科研通“疑难数据库(出版商)”最低求助积分说明 803352