A nomogram for predicting overall survival in patients with parathyroid cancer: A novel web-based calculator

列线图 医学 计算器 内科学 肿瘤科 医学物理学 操作系统 计算机科学
作者
Fangxu Yin,Chong Hou,Song Wang,Xiaohong Wang,Zhenlin Yang
出处
期刊:Asian Journal of Surgery [Elsevier]
卷期号:46 (10): 4169-4177 被引量:1
标识
DOI:10.1016/j.asjsur.2022.10.012
摘要

Parathyroid carcinoma is a rare endocrine malignancy. Considering that clinicians develop appropriate treatment strategies based on patients' survival expectations. Therefore, the present study aimed to develop a survival prediction model to guide clinical decision-making. We retrospectively analyzed 362 parathyroid carcinoma patients diaagnosed in the Surveillance, Epidemiology, and End Results (SEER) database between 2004 and 2015. Correlations between outcome events and variables were analyzed using univariate and multifactorial Cox regression, and variables screened by the multifactorial Cox risk proportional model were used to construct a survival prediction model. The model was evaluated using Receiver Operating Characteristic (ROC) curves, decision curve analysis (DCA), and C-index and calibration curves. Univariate and multifactorial COX analyses revealed five independent prognostic factors for parathyroid carcinoma patients, which were subsequently used to develop the nomogram prediction model. In the training cohort, the C-index of the nomogram in predicting the overall survival (OS) was 0.747 (0.686–0.808), the area under the receiver operator characteristics curve(AUC)values of the nomogram in prediction of the 3, 5, and 10-year OS were 0.718 (0617-0.819), 0.711 (0.614–0.808) and 0.706 (0.610–0.803), respectively. In the validation cohort, the C-index was 0.740 (0.645–0.835), The AUC for 3, 5, and 10-years OS were 0.736 (0.584–0888), 0.698 (0.551–0.845) and 0.767 (0.647–0.887), respectively. The C-index, time-dependent ROC curve, calibration curve, and DCA showed that the Nomogram had a clear advantage. The developed nomogram can be applied in clinical practice to help clinicians to assess patient prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助guan采纳,获得10
刚刚
善学以致用应助邓淑君采纳,获得10
1秒前
拉萨小医生完成签到,获得积分10
2秒前
领导范儿应助Murphy采纳,获得10
2秒前
hhh发布了新的文献求助10
2秒前
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
一一应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
3秒前
bkagyin应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
聪明灵阳应助科研通管家采纳,获得30
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
CipherSage应助木木采纳,获得10
4秒前
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
无名老大应助科研通管家采纳,获得30
4秒前
一一应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
5秒前
ju龙哥发布了新的文献求助10
5秒前
aczqay应助科研通管家采纳,获得10
5秒前
无名老大应助科研通管家采纳,获得30
5秒前
一一应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
聪明灵阳应助科研通管家采纳,获得30
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
无名老大应助科研通管家采纳,获得30
5秒前
5秒前
6秒前
娜娜子欧发布了新的文献求助10
6秒前
yaney发布了新的文献求助30
7秒前
croco完成签到,获得积分10
7秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490396
求助须知:如何正确求助?哪些是违规求助? 3077358
关于积分的说明 9148590
捐赠科研通 2769569
什么是DOI,文献DOI怎么找? 1519799
邀请新用户注册赠送积分活动 704314
科研通“疑难数据库(出版商)”最低求助积分说明 702113