亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adversarial Patch Attack on Multi-Scale Object Detection for UAV Remote Sensing Images

对抗制 计算机科学 比例(比率) 钥匙(锁) 对象(语法) 目标检测 人工智能 遥感 计算机视觉 计算机安全 模式识别(心理学) 地质学 地理 地图学
作者
Yichuang Zhang,Yu Zhang,Jiahao Qi,Kangcheng Bin,Hao Wen,Xunqian Tong,Ping Zhong
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:14 (21): 5298-5298 被引量:27
标识
DOI:10.3390/rs14215298
摘要

Although deep learning has received extensive attention and achieved excellent performance in various scenarios, it suffers from adversarial examples to some extent. In particular, physical attack poses a greater threat than digital attack. However, existing research has paid less attention to the physical attack of object detection in UAV remote sensing images (RSIs). In this work, we carefully analyze the universal adversarial patch attack for multi-scale objects in the field of remote sensing. There are two challenges faced by an adversarial attack in RSIs. On one hand, the number of objects in remote sensing images is more than that of natural images. Therefore, it is difficult for an adversarial patch to show an adversarial effect on all objects when attacking a detector of RSIs. On the other hand, the wide height range of the photography platform causes the size of objects to vary a great deal, which presents challenges for the generation of universal adversarial perturbation for multi-scale objects. To this end, we propose an adversarial attack method of object detection for remote sensing data. One of the key ideas of the proposed method is the novel optimization of the adversarial patch. We aim to attack as many objects as possible by formulating a joint optimization problem. Furthermore, we raise the scale factor to generate a universal adversarial patch that adapts to multi-scale objects, which ensures that the adversarial patch is valid for multi-scale objects in the real world. Extensive experiments demonstrate the superiority of our method against state-of-the-art methods on YOLO-v3 and YOLO-v5. In addition, we also validate the effectiveness of our method in real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冒险寻羊完成签到,获得积分10
13秒前
39秒前
lixiaorui发布了新的文献求助10
44秒前
1分钟前
1分钟前
1分钟前
宅心仁厚完成签到 ,获得积分10
1分钟前
1分钟前
天天完成签到 ,获得积分10
1分钟前
1分钟前
灰色白面鸮完成签到,获得积分10
1分钟前
1分钟前
1分钟前
yqt完成签到,获得积分10
1分钟前
lixiaorui发布了新的文献求助10
1分钟前
2分钟前
哈哈发布了新的文献求助10
2分钟前
2分钟前
orixero应助油柑美式采纳,获得10
2分钟前
2分钟前
2分钟前
油柑美式发布了新的文献求助10
2分钟前
2分钟前
哈哈完成签到,获得积分10
2分钟前
2分钟前
希望天下0贩的0应助123456采纳,获得10
2分钟前
RONG完成签到 ,获得积分10
2分钟前
2分钟前
www完成签到,获得积分10
2分钟前
123456发布了新的文献求助10
2分钟前
李健的小迷弟应助jarrettee采纳,获得10
3分钟前
3分钟前
3分钟前
TXZ06完成签到,获得积分10
3分钟前
山猪吃细糠完成签到 ,获得积分10
4分钟前
4分钟前
杨怀托发布了新的文献求助30
4分钟前
4分钟前
狂野吐司完成签到 ,获得积分10
4分钟前
hh发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5254139
求助须知:如何正确求助?哪些是违规求助? 4417202
关于积分的说明 13751065
捐赠科研通 4289797
什么是DOI,文献DOI怎么找? 2353745
邀请新用户注册赠送积分活动 1350442
关于科研通互助平台的介绍 1310479