Adversarial Patch Attack on Multi-Scale Object Detection for UAV Remote Sensing Images

对抗制 计算机科学 比例(比率) 钥匙(锁) 对象(语法) 目标检测 人工智能 遥感 计算机视觉 计算机安全 模式识别(心理学) 地质学 地理 地图学
作者
Yichuang Zhang,Yu Zhang,Jiahao Qi,Kangcheng Bin,Hao Wen,Xunqian Tong,Ping Zhong
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:14 (21): 5298-5298 被引量:27
标识
DOI:10.3390/rs14215298
摘要

Although deep learning has received extensive attention and achieved excellent performance in various scenarios, it suffers from adversarial examples to some extent. In particular, physical attack poses a greater threat than digital attack. However, existing research has paid less attention to the physical attack of object detection in UAV remote sensing images (RSIs). In this work, we carefully analyze the universal adversarial patch attack for multi-scale objects in the field of remote sensing. There are two challenges faced by an adversarial attack in RSIs. On one hand, the number of objects in remote sensing images is more than that of natural images. Therefore, it is difficult for an adversarial patch to show an adversarial effect on all objects when attacking a detector of RSIs. On the other hand, the wide height range of the photography platform causes the size of objects to vary a great deal, which presents challenges for the generation of universal adversarial perturbation for multi-scale objects. To this end, we propose an adversarial attack method of object detection for remote sensing data. One of the key ideas of the proposed method is the novel optimization of the adversarial patch. We aim to attack as many objects as possible by formulating a joint optimization problem. Furthermore, we raise the scale factor to generate a universal adversarial patch that adapts to multi-scale objects, which ensures that the adversarial patch is valid for multi-scale objects in the real world. Extensive experiments demonstrate the superiority of our method against state-of-the-art methods on YOLO-v3 and YOLO-v5. In addition, we also validate the effectiveness of our method in real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
韭菜盒子发布了新的文献求助10
1秒前
笑点低的凉面完成签到,获得积分10
2秒前
哈哈哈哈完成签到,获得积分10
3秒前
xr完成签到 ,获得积分10
4秒前
hyl-tcm完成签到 ,获得积分10
4秒前
Millie_Ho完成签到,获得积分10
5秒前
迷路绮南完成签到 ,获得积分10
5秒前
6秒前
Lars完成签到 ,获得积分10
6秒前
行星一只兔完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助150
6秒前
wnx001111发布了新的文献求助10
7秒前
7秒前
脑洞疼应助韭菜盒子采纳,获得10
7秒前
bkagyin应助吃饼妹妹采纳,获得10
8秒前
爱吃芝士完成签到,获得积分10
8秒前
nqterysc完成签到,获得积分10
9秒前
yuyihuii完成签到,获得积分10
10秒前
10秒前
13秒前
kyle完成签到 ,获得积分10
13秒前
任性雪糕完成签到 ,获得积分10
14秒前
大憨憨完成签到 ,获得积分10
14秒前
蛇從革发布了新的文献求助90
15秒前
CHSLN发布了新的文献求助10
15秒前
研友_VZG7GZ应助罗氏集团采纳,获得10
16秒前
卷心菜完成签到 ,获得积分10
16秒前
临猗下大雨完成签到,获得积分10
17秒前
虞雪儿儿完成签到 ,获得积分0
17秒前
萌萌许完成签到,获得积分10
18秒前
TongKY完成签到 ,获得积分10
18秒前
小恶于完成签到 ,获得积分10
19秒前
wnx001111完成签到,获得积分10
19秒前
仰望wang完成签到 ,获得积分10
19秒前
20秒前
点点完成签到 ,获得积分10
20秒前
CHSLN完成签到,获得积分10
20秒前
碧蓝莫言完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5079796
求助须知:如何正确求助?哪些是违规求助? 4297897
关于积分的说明 13389149
捐赠科研通 4121238
什么是DOI,文献DOI怎么找? 2257068
邀请新用户注册赠送积分活动 1261339
关于科研通互助平台的介绍 1195451