Adversarial Patch Attack on Multi-Scale Object Detection for UAV Remote Sensing Images

对抗制 计算机科学 比例(比率) 钥匙(锁) 对象(语法) 目标检测 人工智能 遥感 计算机视觉 计算机安全 模式识别(心理学) 地质学 地理 地图学
作者
Yichuang Zhang,Yu Zhang,Jiahao Qi,Kangcheng Bin,Hao Wen,Xunqian Tong,Ping Zhong
出处
期刊:Remote Sensing [MDPI AG]
卷期号:14 (21): 5298-5298 被引量:27
标识
DOI:10.3390/rs14215298
摘要

Although deep learning has received extensive attention and achieved excellent performance in various scenarios, it suffers from adversarial examples to some extent. In particular, physical attack poses a greater threat than digital attack. However, existing research has paid less attention to the physical attack of object detection in UAV remote sensing images (RSIs). In this work, we carefully analyze the universal adversarial patch attack for multi-scale objects in the field of remote sensing. There are two challenges faced by an adversarial attack in RSIs. On one hand, the number of objects in remote sensing images is more than that of natural images. Therefore, it is difficult for an adversarial patch to show an adversarial effect on all objects when attacking a detector of RSIs. On the other hand, the wide height range of the photography platform causes the size of objects to vary a great deal, which presents challenges for the generation of universal adversarial perturbation for multi-scale objects. To this end, we propose an adversarial attack method of object detection for remote sensing data. One of the key ideas of the proposed method is the novel optimization of the adversarial patch. We aim to attack as many objects as possible by formulating a joint optimization problem. Furthermore, we raise the scale factor to generate a universal adversarial patch that adapts to multi-scale objects, which ensures that the adversarial patch is valid for multi-scale objects in the real world. Extensive experiments demonstrate the superiority of our method against state-of-the-art methods on YOLO-v3 and YOLO-v5. In addition, we also validate the effectiveness of our method in real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hongenhugu完成签到,获得积分10
1秒前
4秒前
6秒前
brown完成签到,获得积分10
6秒前
wjb完成签到,获得积分10
6秒前
hongenhugu发布了新的文献求助10
6秒前
bpp2468关注了科研通微信公众号
7秒前
。。。完成签到,获得积分10
7秒前
Allison完成签到,获得积分20
9秒前
上善若水完成签到 ,获得积分10
10秒前
升升升呀发布了新的文献求助10
11秒前
天天快乐应助MOOTEA采纳,获得10
12秒前
我是老大应助白石采纳,获得10
14秒前
17秒前
18秒前
科研鸟完成签到 ,获得积分10
18秒前
高兴问凝完成签到,获得积分10
19秒前
19秒前
桃子e完成签到 ,获得积分10
20秒前
21秒前
CodeCraft应助Kannan采纳,获得10
21秒前
橙子完成签到 ,获得积分10
21秒前
高兴问凝发布了新的文献求助10
22秒前
石楠发布了新的文献求助10
23秒前
板凳儿cc发布了新的文献求助30
23秒前
MOOTEA发布了新的文献求助10
23秒前
23秒前
英俊的铭应助sunny采纳,获得10
24秒前
海豚彦彦完成签到,获得积分10
25秒前
维C橙子发布了新的文献求助10
26秒前
RTena.发布了新的文献求助10
27秒前
TTTTTT发布了新的文献求助10
27秒前
Jasper应助千阳采纳,获得10
27秒前
Ricky发布了新的文献求助10
28秒前
安静幻枫应助Tu采纳,获得20
28秒前
Jasper应助喝杯水再走采纳,获得10
29秒前
29秒前
饺子发布了新的文献求助10
32秒前
YJ888完成签到,获得积分20
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459815
求助须知:如何正确求助?哪些是违规求助? 3054040
关于积分的说明 9040262
捐赠科研通 2743383
什么是DOI,文献DOI怎么找? 1504849
科研通“疑难数据库(出版商)”最低求助积分说明 695430
邀请新用户注册赠送积分活动 694717