Adversarial Patch Attack on Multi-Scale Object Detection for UAV Remote Sensing Images

对抗制 计算机科学 比例(比率) 钥匙(锁) 对象(语法) 目标检测 人工智能 遥感 计算机视觉 计算机安全 模式识别(心理学) 地质学 地理 地图学
作者
Yichuang Zhang,Yu Zhang,Jiahao Qi,Kangcheng Bin,Hao Wen,Xunqian Tong,Ping Zhong
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:14 (21): 5298-5298 被引量:27
标识
DOI:10.3390/rs14215298
摘要

Although deep learning has received extensive attention and achieved excellent performance in various scenarios, it suffers from adversarial examples to some extent. In particular, physical attack poses a greater threat than digital attack. However, existing research has paid less attention to the physical attack of object detection in UAV remote sensing images (RSIs). In this work, we carefully analyze the universal adversarial patch attack for multi-scale objects in the field of remote sensing. There are two challenges faced by an adversarial attack in RSIs. On one hand, the number of objects in remote sensing images is more than that of natural images. Therefore, it is difficult for an adversarial patch to show an adversarial effect on all objects when attacking a detector of RSIs. On the other hand, the wide height range of the photography platform causes the size of objects to vary a great deal, which presents challenges for the generation of universal adversarial perturbation for multi-scale objects. To this end, we propose an adversarial attack method of object detection for remote sensing data. One of the key ideas of the proposed method is the novel optimization of the adversarial patch. We aim to attack as many objects as possible by formulating a joint optimization problem. Furthermore, we raise the scale factor to generate a universal adversarial patch that adapts to multi-scale objects, which ensures that the adversarial patch is valid for multi-scale objects in the real world. Extensive experiments demonstrate the superiority of our method against state-of-the-art methods on YOLO-v3 and YOLO-v5. In addition, we also validate the effectiveness of our method in real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助StevenW采纳,获得10
刚刚
搜集达人应助Lc采纳,获得10
刚刚
SophiaHH完成签到,获得积分10
1秒前
王翠花完成签到,获得积分10
1秒前
aftale完成签到 ,获得积分10
2秒前
GGGGGG果果发布了新的文献求助10
2秒前
Eric完成签到,获得积分10
3秒前
3秒前
yy发布了新的文献求助10
4秒前
王定春完成签到,获得积分10
4秒前
所所应助唯有一个心采纳,获得10
4秒前
23421完成签到 ,获得积分10
4秒前
小马过河完成签到,获得积分10
4秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
李爱国应助乖张采纳,获得10
5秒前
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
5秒前
orixero应助科研通管家采纳,获得10
5秒前
5秒前
贪玩的半仙完成签到,获得积分10
5秒前
5秒前
王翠花发布了新的文献求助10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
6秒前
6秒前
yyang发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
orixero应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
英俊的铭应助ablexm采纳,获得10
6秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016369
求助须知:如何正确求助?哪些是违规求助? 3556535
关于积分的说明 11321511
捐赠科研通 3289320
什么是DOI,文献DOI怎么找? 1812429
邀请新用户注册赠送积分活动 887952
科研通“疑难数据库(出版商)”最低求助积分说明 812060