Blockchain-empowered Federated Learning: Challenges, Solutions, and Future Directions

计算机科学 块链 联合学习 可靠性 数据科学 可信赖性 分类 计算机安全 人工智能 政治学 法学
作者
Juncen Zhu,Jiannong Cao,Divya Saxena,Shan Jiang,Houda Ferradi
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:55 (11): 1-31 被引量:111
标识
DOI:10.1145/3570953
摘要

Federated learning is a privacy-preserving machine learning technique that trains models across multiple devices holding local data samples without exchanging them. There are many challenging issues in federated learning, such as coordinating participants’ activities, arbitrating their benefits, and aggregating models. Most existing solutions employ a centralized approach, in which a trustworthy central authority is needed for coordination. Such an approach incurs many disadvantages, including vulnerability to attacks, lack of credibility, and difficulty in calculating rewards. Recently, blockchain was identified as a potential solution for addressing the abovementioned issues. Extensive research has been conducted, and many approaches, methods, and techniques have been proposed. There is a need for a systematic survey to examine how blockchain can empower federated learning. Although there are many surveys on federated learning, few of them cover blockchain as an enabling technology. This work comprehensively surveys challenges, solutions, and future directions for blockchain-empowered federated learning (BlockFed). First, we identify the critical issues in federated learning and explain why blockchain provides a potential approach to addressing these issues. Second, we categorize existing system models into three classes: decoupled, coupled, and overlapped, according to how the federated learning and blockchain functions are integrated. Then we compare the advantages and disadvantages of these three system models, regard the disadvantages as challenging issues in BlockFed, and investigate corresponding solutions. Finally, we identify and discuss the future directions, including open problems in BlockFed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HP发布了新的文献求助10
刚刚
刚刚
橙汁摇一摇完成签到 ,获得积分10
1秒前
柚子完成签到,获得积分20
1秒前
听筒23完成签到 ,获得积分10
2秒前
经竺应助XNMR采纳,获得10
2秒前
cc完成签到 ,获得积分10
3秒前
叽里咕噜完成签到,获得积分10
3秒前
qianzheng完成签到,获得积分10
3秒前
3秒前
经竺举报白华苍松求助涉嫌违规
3秒前
惜筠发布了新的文献求助10
4秒前
LL完成签到,获得积分10
4秒前
喵酱发布了新的文献求助10
4秒前
doudou发布了新的文献求助10
4秒前
饺子完成签到,获得积分10
4秒前
wuzhizhongbin完成签到,获得积分10
5秒前
所所应助秀丽的曼雁采纳,获得10
5秒前
6秒前
6秒前
叽里咕噜发布了新的文献求助10
7秒前
风中莫英发布了新的文献求助10
9秒前
9秒前
活力甜瓜发布了新的文献求助20
10秒前
10秒前
顾矜应助韩雨儿采纳,获得10
10秒前
柠七完成签到,获得积分10
11秒前
11秒前
漾漾完成签到,获得积分10
11秒前
晴晴完成签到,获得积分10
11秒前
11秒前
充电宝应助doudou采纳,获得10
11秒前
123_完成签到,获得积分10
11秒前
研友_VZG7GZ应助得到采纳,获得10
12秒前
123完成签到,获得积分10
12秒前
TearMarks完成签到 ,获得积分10
12秒前
sharronnie完成签到 ,获得积分10
12秒前
搞怪迎夏应助chenxiaolei采纳,获得10
12秒前
13秒前
abc完成签到,获得积分10
14秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3230413
求助须知:如何正确求助?哪些是违规求助? 2877879
关于积分的说明 8203224
捐赠科研通 2545230
什么是DOI,文献DOI怎么找? 1374967
科研通“疑难数据库(出版商)”最低求助积分说明 647207
邀请新用户注册赠送积分活动 622139