Blockchain-empowered Federated Learning: Challenges, Solutions, and Future Directions

计算机科学 块链 联合学习 可靠性 数据科学 可信赖性 分类 计算机安全 人工智能 政治学 法学
作者
Juncen Zhu,Jiannong Cao,Divya Saxena,Shan Jiang,Houda Ferradi
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:55 (11): 1-31 被引量:218
标识
DOI:10.1145/3570953
摘要

Federated learning is a privacy-preserving machine learning technique that trains models across multiple devices holding local data samples without exchanging them. There are many challenging issues in federated learning, such as coordinating participants’ activities, arbitrating their benefits, and aggregating models. Most existing solutions employ a centralized approach, in which a trustworthy central authority is needed for coordination. Such an approach incurs many disadvantages, including vulnerability to attacks, lack of credibility, and difficulty in calculating rewards. Recently, blockchain was identified as a potential solution for addressing the abovementioned issues. Extensive research has been conducted, and many approaches, methods, and techniques have been proposed. There is a need for a systematic survey to examine how blockchain can empower federated learning. Although there are many surveys on federated learning, few of them cover blockchain as an enabling technology. This work comprehensively surveys challenges, solutions, and future directions for blockchain-empowered federated learning (BlockFed). First, we identify the critical issues in federated learning and explain why blockchain provides a potential approach to addressing these issues. Second, we categorize existing system models into three classes: decoupled, coupled, and overlapped, according to how the federated learning and blockchain functions are integrated. Then we compare the advantages and disadvantages of these three system models, regard the disadvantages as challenging issues in BlockFed, and investigate corresponding solutions. Finally, we identify and discuss the future directions, including open problems in BlockFed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hin66发布了新的文献求助10
2秒前
侯总应助南笛采纳,获得10
2秒前
Protein完成签到,获得积分10
2秒前
充电宝应助千禧龙采纳,获得10
2秒前
Junanne完成签到,获得积分10
3秒前
Susu完成签到,获得积分10
3秒前
5秒前
nn发布了新的文献求助10
5秒前
wsmmmmm发布了新的文献求助10
5秒前
欣欣完成签到,获得积分10
6秒前
7秒前
库库里里大完成签到,获得积分10
7秒前
追光者发布了新的文献求助10
8秒前
沉默的倔驴应助lhOAQ采纳,获得10
9秒前
南也关注了科研通微信公众号
9秒前
懒癌晚期完成签到,获得积分10
10秒前
10秒前
Hin66完成签到,获得积分20
11秒前
11秒前
11秒前
orixero应助hmj采纳,获得10
12秒前
能干的邹发布了新的文献求助10
13秒前
14秒前
何意味完成签到 ,获得积分10
15秒前
水木年华发布了新的文献求助10
15秒前
17秒前
17秒前
彭于晏应助欣喜的尔曼采纳,获得10
17秒前
18秒前
木又权完成签到,获得积分10
19秒前
能干的邹完成签到,获得积分10
19秒前
善学以致用应助艾原采纳,获得10
19秒前
科研通AI6应助任成艳采纳,获得10
19秒前
岳拔萃发布了新的文献求助10
20秒前
茉莉完成签到,获得积分10
20秒前
20秒前
白雪阁发布了新的文献求助10
21秒前
21秒前
Kyrie完成签到,获得积分10
21秒前
卞珂完成签到,获得积分10
22秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588355
求助须知:如何正确求助?哪些是违规求助? 4671484
关于积分的说明 14787308
捐赠科研通 4625063
什么是DOI,文献DOI怎么找? 2531787
邀请新用户注册赠送积分活动 1500349
关于科研通互助平台的介绍 1468300