Blockchain-empowered Federated Learning: Challenges, Solutions, and Future Directions

计算机科学 块链 联合学习 可靠性 数据科学 可信赖性 分类 计算机安全 人工智能 政治学 法学
作者
Juncen Zhu,Jiannong Cao,Divya Saxena,Shan Jiang,Houda Ferradi
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:55 (11): 1-31 被引量:139
标识
DOI:10.1145/3570953
摘要

Federated learning is a privacy-preserving machine learning technique that trains models across multiple devices holding local data samples without exchanging them. There are many challenging issues in federated learning, such as coordinating participants’ activities, arbitrating their benefits, and aggregating models. Most existing solutions employ a centralized approach, in which a trustworthy central authority is needed for coordination. Such an approach incurs many disadvantages, including vulnerability to attacks, lack of credibility, and difficulty in calculating rewards. Recently, blockchain was identified as a potential solution for addressing the abovementioned issues. Extensive research has been conducted, and many approaches, methods, and techniques have been proposed. There is a need for a systematic survey to examine how blockchain can empower federated learning. Although there are many surveys on federated learning, few of them cover blockchain as an enabling technology. This work comprehensively surveys challenges, solutions, and future directions for blockchain-empowered federated learning (BlockFed). First, we identify the critical issues in federated learning and explain why blockchain provides a potential approach to addressing these issues. Second, we categorize existing system models into three classes: decoupled, coupled, and overlapped, according to how the federated learning and blockchain functions are integrated. Then we compare the advantages and disadvantages of these three system models, regard the disadvantages as challenging issues in BlockFed, and investigate corresponding solutions. Finally, we identify and discuss the future directions, including open problems in BlockFed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韶华若锦发布了新的文献求助10
1秒前
2秒前
还单身的语薇完成签到,获得积分10
4秒前
4秒前
6秒前
QQ完成签到 ,获得积分10
8秒前
9秒前
gttlyb完成签到,获得积分10
13秒前
研友_VZG7GZ应助长岛的雪采纳,获得10
13秒前
16秒前
兔兔要睡觉完成签到,获得积分10
17秒前
甜甜的紫菜完成签到 ,获得积分10
17秒前
18秒前
18秒前
受伤芝麻完成签到,获得积分10
18秒前
xiaoyue完成签到,获得积分10
18秒前
piggybunny完成签到,获得积分10
20秒前
酷波er应助温暖幻桃采纳,获得10
20秒前
受伤芝麻发布了新的文献求助200
21秒前
22秒前
文武贝发布了新的文献求助10
22秒前
斯文败类应助piggybunny采纳,获得10
24秒前
单于无极完成签到,获得积分10
25秒前
27秒前
chen应助文武贝采纳,获得10
27秒前
聪明无颜发布了新的文献求助10
28秒前
28秒前
义气笑容完成签到,获得积分10
28秒前
暴躁的嘉懿完成签到,获得积分10
30秒前
WQX001X完成签到 ,获得积分10
32秒前
恩善发布了新的文献求助10
32秒前
yangyuanhao完成签到,获得积分10
33秒前
33秒前
缥缈完成签到 ,获得积分10
33秒前
37秒前
威武皮带完成签到,获得积分10
37秒前
俊逸小海豚完成签到,获得积分20
37秒前
Kenzonvay发布了新的文献求助10
38秒前
WHATEVER发布了新的文献求助10
39秒前
41秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951021
求助须知:如何正确求助?哪些是违规求助? 3496420
关于积分的说明 11081962
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784010
邀请新用户注册赠送积分活动 868130
科研通“疑难数据库(出版商)”最低求助积分说明 801003