重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Blockchain-empowered Federated Learning: Challenges, Solutions, and Future Directions

计算机科学 块链 联合学习 可靠性 数据科学 可信赖性 分类 计算机安全 人工智能 政治学 法学
作者
Juncen Zhu,Jiannong Cao,Divya Saxena,Shan Jiang,Houda Ferradi
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:55 (11): 1-31 被引量:218
标识
DOI:10.1145/3570953
摘要

Federated learning is a privacy-preserving machine learning technique that trains models across multiple devices holding local data samples without exchanging them. There are many challenging issues in federated learning, such as coordinating participants’ activities, arbitrating their benefits, and aggregating models. Most existing solutions employ a centralized approach, in which a trustworthy central authority is needed for coordination. Such an approach incurs many disadvantages, including vulnerability to attacks, lack of credibility, and difficulty in calculating rewards. Recently, blockchain was identified as a potential solution for addressing the abovementioned issues. Extensive research has been conducted, and many approaches, methods, and techniques have been proposed. There is a need for a systematic survey to examine how blockchain can empower federated learning. Although there are many surveys on federated learning, few of them cover blockchain as an enabling technology. This work comprehensively surveys challenges, solutions, and future directions for blockchain-empowered federated learning (BlockFed). First, we identify the critical issues in federated learning and explain why blockchain provides a potential approach to addressing these issues. Second, we categorize existing system models into three classes: decoupled, coupled, and overlapped, according to how the federated learning and blockchain functions are integrated. Then we compare the advantages and disadvantages of these three system models, regard the disadvantages as challenging issues in BlockFed, and investigate corresponding solutions. Finally, we identify and discuss the future directions, including open problems in BlockFed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩色的诗桃完成签到,获得积分10
1秒前
2秒前
chanlei发布了新的文献求助10
2秒前
浮游应助体贴的小天鹅采纳,获得10
3秒前
orixero应助小鲸鱼很可爱采纳,获得10
3秒前
朱大帅发布了新的文献求助10
3秒前
lql完成签到 ,获得积分10
4秒前
4秒前
大个应助guangshuang采纳,获得10
4秒前
梓墨发布了新的文献求助10
5秒前
5秒前
Rabbit完成签到 ,获得积分10
6秒前
KYT完成签到,获得积分10
6秒前
河句完成签到 ,获得积分10
7秒前
8秒前
葛一豪发布了新的文献求助30
8秒前
晓婷婷完成签到,获得积分10
8秒前
MMMM完成签到 ,获得积分10
9秒前
KYT发布了新的文献求助10
9秒前
彭于晏应助ddd采纳,获得30
10秒前
chanlei完成签到,获得积分20
10秒前
10秒前
太阳罗山的地方完成签到,获得积分10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
111完成签到,获得积分10
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
11秒前
华仔应助科研通管家采纳,获得10
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
且慢应助科研通管家采纳,获得10
11秒前
小明应助科研通管家采纳,获得20
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得100
11秒前
11秒前
浮游应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467931
求助须知:如何正确求助?哪些是违规求助? 4571421
关于积分的说明 14330283
捐赠科研通 4497999
什么是DOI,文献DOI怎么找? 2464266
邀请新用户注册赠送积分活动 1453006
关于科研通互助平台的介绍 1427707