Blockchain-empowered Federated Learning: Challenges, Solutions, and Future Directions

计算机科学 块链 联合学习 可靠性 数据科学 可信赖性 分类 计算机安全 人工智能 政治学 法学
作者
Juncen Zhu,Jiannong Cao,Divya Saxena,Shan Jiang,Houda Ferradi
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:55 (11): 1-31 被引量:218
标识
DOI:10.1145/3570953
摘要

Federated learning is a privacy-preserving machine learning technique that trains models across multiple devices holding local data samples without exchanging them. There are many challenging issues in federated learning, such as coordinating participants’ activities, arbitrating their benefits, and aggregating models. Most existing solutions employ a centralized approach, in which a trustworthy central authority is needed for coordination. Such an approach incurs many disadvantages, including vulnerability to attacks, lack of credibility, and difficulty in calculating rewards. Recently, blockchain was identified as a potential solution for addressing the abovementioned issues. Extensive research has been conducted, and many approaches, methods, and techniques have been proposed. There is a need for a systematic survey to examine how blockchain can empower federated learning. Although there are many surveys on federated learning, few of them cover blockchain as an enabling technology. This work comprehensively surveys challenges, solutions, and future directions for blockchain-empowered federated learning (BlockFed). First, we identify the critical issues in federated learning and explain why blockchain provides a potential approach to addressing these issues. Second, we categorize existing system models into three classes: decoupled, coupled, and overlapped, according to how the federated learning and blockchain functions are integrated. Then we compare the advantages and disadvantages of these three system models, regard the disadvantages as challenging issues in BlockFed, and investigate corresponding solutions. Finally, we identify and discuss the future directions, including open problems in BlockFed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bxtx完成签到,获得积分10
刚刚
mhcsci完成签到,获得积分10
刚刚
温言叮叮铛完成签到,获得积分10
1秒前
kkk完成签到,获得积分10
1秒前
1秒前
王二柱今天毕业了吗完成签到,获得积分10
1秒前
如意歌曲发布了新的文献求助10
1秒前
何书易发布了新的文献求助10
1秒前
陆菱柒完成签到,获得积分20
2秒前
万能图书馆应助Bonnie采纳,获得10
2秒前
2秒前
Ding-Ding完成签到,获得积分10
2秒前
Jyouang发布了新的文献求助10
3秒前
3秒前
3秒前
勇敢的心发布了新的文献求助10
3秒前
干净绮烟完成签到,获得积分10
3秒前
3秒前
DZT完成签到,获得积分10
4秒前
4秒前
雨蝶晓晓洁完成签到,获得积分10
4秒前
领导范儿应助感动傀斗采纳,获得10
5秒前
四夕完成签到 ,获得积分10
5秒前
AI读文献的小新完成签到,获得积分10
5秒前
搜集达人应助自信雪冥采纳,获得10
5秒前
Jasper应助自觉远山采纳,获得10
5秒前
260929667完成签到,获得积分10
5秒前
彭医生完成签到,获得积分10
5秒前
5秒前
EZ完成签到 ,获得积分10
6秒前
6秒前
雪山飞龙发布了新的文献求助10
6秒前
7秒前
手动阀完成签到,获得积分10
7秒前
Leo发布了新的文献求助10
8秒前
顾矜应助如意歌曲采纳,获得10
8秒前
8秒前
彧Y完成签到 ,获得积分10
8秒前
科研通AI2S应助Jyouang采纳,获得10
9秒前
玛卡巴卡完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5427401
求助须知:如何正确求助?哪些是违规求助? 4540937
关于积分的说明 14175101
捐赠科研通 4458915
什么是DOI,文献DOI怎么找? 2445138
邀请新用户注册赠送积分活动 1436275
关于科研通互助平台的介绍 1413758