清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Blockchain-empowered Federated Learning: Challenges, Solutions, and Future Directions

计算机科学 块链 联合学习 可靠性 数据科学 可信赖性 分类 计算机安全 人工智能 政治学 法学
作者
Juncen Zhu,Jiannong Cao,Divya Saxena,Shan Jiang,Houda Ferradi
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:55 (11): 1-31 被引量:218
标识
DOI:10.1145/3570953
摘要

Federated learning is a privacy-preserving machine learning technique that trains models across multiple devices holding local data samples without exchanging them. There are many challenging issues in federated learning, such as coordinating participants’ activities, arbitrating their benefits, and aggregating models. Most existing solutions employ a centralized approach, in which a trustworthy central authority is needed for coordination. Such an approach incurs many disadvantages, including vulnerability to attacks, lack of credibility, and difficulty in calculating rewards. Recently, blockchain was identified as a potential solution for addressing the abovementioned issues. Extensive research has been conducted, and many approaches, methods, and techniques have been proposed. There is a need for a systematic survey to examine how blockchain can empower federated learning. Although there are many surveys on federated learning, few of them cover blockchain as an enabling technology. This work comprehensively surveys challenges, solutions, and future directions for blockchain-empowered federated learning (BlockFed). First, we identify the critical issues in federated learning and explain why blockchain provides a potential approach to addressing these issues. Second, we categorize existing system models into three classes: decoupled, coupled, and overlapped, according to how the federated learning and blockchain functions are integrated. Then we compare the advantages and disadvantages of these three system models, regard the disadvantages as challenging issues in BlockFed, and investigate corresponding solutions. Finally, we identify and discuss the future directions, including open problems in BlockFed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有人应助科研通管家采纳,获得10
11秒前
有人应助科研通管家采纳,获得10
11秒前
无极微光应助科研通管家采纳,获得50
11秒前
无极微光应助科研通管家采纳,获得50
11秒前
11秒前
11秒前
有人应助科研通管家采纳,获得10
11秒前
有人应助科研通管家采纳,获得10
11秒前
有人应助科研通管家采纳,获得10
11秒前
有人应助科研通管家采纳,获得10
11秒前
有人应助科研通管家采纳,获得10
11秒前
有人应助科研通管家采纳,获得10
12秒前
有人应助科研通管家采纳,获得10
12秒前
NINI完成签到 ,获得积分10
55秒前
Raymond完成签到,获得积分10
56秒前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
有人应助科研通管家采纳,获得10
2分钟前
非哲完成签到 ,获得积分10
2分钟前
2分钟前
白瑾完成签到 ,获得积分10
2分钟前
2分钟前
飘逸的孤丹关注了科研通微信公众号
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
xinjie发布了新的文献求助10
3分钟前
4分钟前
4分钟前
搜集达人应助科研通管家采纳,获得10
4分钟前
快乐随心完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789013
求助须知:如何正确求助?哪些是违规求助? 5714309
关于积分的说明 15474060
捐赠科研通 4916947
什么是DOI,文献DOI怎么找? 2646665
邀请新用户注册赠送积分活动 1594331
关于科研通互助平台的介绍 1548791