Blockchain-empowered Federated Learning: Challenges, Solutions, and Future Directions

计算机科学 块链 联合学习 可靠性 数据科学 可信赖性 分类 计算机安全 人工智能 政治学 法学
作者
Juncen Zhu,Jiannong Cao,Divya Saxena,Shan Jiang,Houda Ferradi
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:55 (11): 1-31 被引量:218
标识
DOI:10.1145/3570953
摘要

Federated learning is a privacy-preserving machine learning technique that trains models across multiple devices holding local data samples without exchanging them. There are many challenging issues in federated learning, such as coordinating participants’ activities, arbitrating their benefits, and aggregating models. Most existing solutions employ a centralized approach, in which a trustworthy central authority is needed for coordination. Such an approach incurs many disadvantages, including vulnerability to attacks, lack of credibility, and difficulty in calculating rewards. Recently, blockchain was identified as a potential solution for addressing the abovementioned issues. Extensive research has been conducted, and many approaches, methods, and techniques have been proposed. There is a need for a systematic survey to examine how blockchain can empower federated learning. Although there are many surveys on federated learning, few of them cover blockchain as an enabling technology. This work comprehensively surveys challenges, solutions, and future directions for blockchain-empowered federated learning (BlockFed). First, we identify the critical issues in federated learning and explain why blockchain provides a potential approach to addressing these issues. Second, we categorize existing system models into three classes: decoupled, coupled, and overlapped, according to how the federated learning and blockchain functions are integrated. Then we compare the advantages and disadvantages of these three system models, regard the disadvantages as challenging issues in BlockFed, and investigate corresponding solutions. Finally, we identify and discuss the future directions, including open problems in BlockFed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_VZG7GZ应助洁净的千凡采纳,获得10
刚刚
1秒前
慕青应助ZXY采纳,获得10
1秒前
2秒前
zzz完成签到,获得积分10
3秒前
3秒前
研友_VZG7GZ应助11111采纳,获得10
3秒前
4秒前
4秒前
小鱼头发布了新的文献求助10
4秒前
HaHa007发布了新的文献求助10
5秒前
善良善愁发布了新的文献求助10
6秒前
宪珂完成签到,获得积分10
6秒前
巴啦啦发布了新的文献求助10
7秒前
平常完成签到,获得积分10
7秒前
科研通AI6应助蓝色采纳,获得10
7秒前
Wu完成签到 ,获得积分10
7秒前
汉堡包应助瘦瘦的百褶裙采纳,获得10
7秒前
缓慢元枫完成签到,获得积分20
8秒前
8秒前
123发布了新的文献求助10
9秒前
成以完成签到,获得积分20
9秒前
等一轮明月完成签到 ,获得积分20
9秒前
科研通AI6应助妖精采纳,获得10
10秒前
10秒前
科研通AI6应助脆饼采纳,获得10
11秒前
estk发布了新的文献求助10
11秒前
ZJX应助狂野雨兰采纳,获得10
11秒前
追逐应助喷火战斗鸡采纳,获得10
12秒前
Lucas应助眯眯眼的小懒猪采纳,获得10
13秒前
Xnnnnnn完成签到,获得积分10
13秒前
怡然的雨筠完成签到 ,获得积分10
13秒前
科目三应助小鱼头采纳,获得10
14秒前
asdfzxcv应助夏12采纳,获得10
14秒前
bkagyin应助chai采纳,获得10
14秒前
标致忆丹完成签到,获得积分10
14秒前
英俊的铭应助123采纳,获得10
14秒前
科研通AI6应助木小叶采纳,获得10
14秒前
量子星尘发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656628
求助须知:如何正确求助?哪些是违规求助? 4804442
关于积分的说明 15076544
捐赠科研通 4814884
什么是DOI,文献DOI怎么找? 2576051
邀请新用户注册赠送积分活动 1531356
关于科研通互助平台的介绍 1489936