Blockchain-empowered Federated Learning: Challenges, Solutions, and Future Directions

计算机科学 块链 联合学习 可靠性 数据科学 可信赖性 分类 计算机安全 人工智能 政治学 法学
作者
Juncen Zhu,Jiannong Cao,Divya Saxena,Shan Jiang,Houda Ferradi
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:55 (11): 1-31 被引量:218
标识
DOI:10.1145/3570953
摘要

Federated learning is a privacy-preserving machine learning technique that trains models across multiple devices holding local data samples without exchanging them. There are many challenging issues in federated learning, such as coordinating participants’ activities, arbitrating their benefits, and aggregating models. Most existing solutions employ a centralized approach, in which a trustworthy central authority is needed for coordination. Such an approach incurs many disadvantages, including vulnerability to attacks, lack of credibility, and difficulty in calculating rewards. Recently, blockchain was identified as a potential solution for addressing the abovementioned issues. Extensive research has been conducted, and many approaches, methods, and techniques have been proposed. There is a need for a systematic survey to examine how blockchain can empower federated learning. Although there are many surveys on federated learning, few of them cover blockchain as an enabling technology. This work comprehensively surveys challenges, solutions, and future directions for blockchain-empowered federated learning (BlockFed). First, we identify the critical issues in federated learning and explain why blockchain provides a potential approach to addressing these issues. Second, we categorize existing system models into three classes: decoupled, coupled, and overlapped, according to how the federated learning and blockchain functions are integrated. Then we compare the advantages and disadvantages of these three system models, regard the disadvantages as challenging issues in BlockFed, and investigate corresponding solutions. Finally, we identify and discuss the future directions, including open problems in BlockFed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
孔问筠完成签到,获得积分10
刚刚
zhangxin完成签到,获得积分10
1秒前
浮游应助外向的秋珊采纳,获得10
1秒前
冷艳的纸鹤完成签到,获得积分10
1秒前
QQ完成签到,获得积分10
2秒前
阿啵呲嘚呃of咯完成签到,获得积分10
2秒前
Liooo完成签到 ,获得积分10
2秒前
anya完成签到,获得积分10
2秒前
Donby完成签到,获得积分10
3秒前
benj完成签到,获得积分10
3秒前
侯长秀完成签到 ,获得积分10
4秒前
4秒前
顾矜应助李小小采纳,获得10
4秒前
小蛤蟆完成签到,获得积分10
4秒前
4秒前
5秒前
动听衬衫发布了新的文献求助10
5秒前
11111111111完成签到,获得积分10
5秒前
黑芝麻丸关注了科研通微信公众号
5秒前
5秒前
lds发布了新的文献求助10
6秒前
美好眼神完成签到,获得积分10
7秒前
粗心的忆山完成签到,获得积分10
7秒前
lp完成签到,获得积分10
7秒前
7秒前
8秒前
ppat5012完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
跋扈完成签到,获得积分10
9秒前
孟严青完成签到,获得积分0
9秒前
小白完成签到,获得积分10
9秒前
illusion2019举报认真的恶天求助涉嫌违规
9秒前
9秒前
9秒前
傅逊完成签到,获得积分10
9秒前
Criminology34应助动听衬衫采纳,获得80
10秒前
仙峰水龙发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5315937
求助须知:如何正确求助?哪些是违规求助? 4458488
关于积分的说明 13870596
捐赠科研通 4348245
什么是DOI,文献DOI怎么找? 2388169
邀请新用户注册赠送积分活动 1382240
关于科研通互助平台的介绍 1351627