清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Tool wear prediction based on domain adversarial adaptation and channel attention multiscale convolutional long short-term memory network

材料科学 域适应 期限(时间) 适应(眼睛) 领域(数学分析) 频道(广播) 卷积神经网络 人工智能 计算机科学 神经科学 心理学 电信 分类器(UML) 数学分析 物理 量子力学 数学
作者
Wen Hou,Hong Guo,Lei Luo,Jin Mei-juan
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:84: 1339-1361 被引量:36
标识
DOI:10.1016/j.jmapro.2022.11.017
摘要

Intelligent real-time monitoring of tool wear is significant to ensure the quality of workpieces and the efficiency of machining. However, various factors in the machining process can cause large variations in the monitoring signals, making it difficult to accurately predict tool wear values. To solve this, a tool wear prediction method based on domain adversarial adaptation and squeeze-and-excitation channel attention multiscale convolutional long short-term memory network (SE-DAAMSCLSTM) is proposed. A feature extractor combining multiscale convolution and channel attention with the introduction of domain adversarial mechanism was constructed to extract domain-independent multiscale spatiotemporal features that characterize tool wear, thus enabling accurate prediction of tool wear values. By validating the model on milling datasets and comparing it with conventional prediction methods, the results show that the model enables accurate prediction with variation in tool monitoring signals, demonstrating the superiority of the method in predicting tool wear. • A “domain adaptation + feature extraction” tool wear prediction method is proposed. • The proposed deep learning model can extract multiscale spatiotemporal features. • The proposed method adaptively reduces the impact of domain changes on prediction. • The method was validated on the same and variable working condition datasets. • The proposed model showed better prediction accuracy and performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
29秒前
Eileen完成签到 ,获得积分0
32秒前
zzhui完成签到,获得积分10
51秒前
P_Chem完成签到,获得积分10
1分钟前
浑续完成签到,获得积分10
1分钟前
1分钟前
2分钟前
Jessica发布了新的文献求助10
2分钟前
2分钟前
方白秋完成签到,获得积分0
2分钟前
迷茫的一代完成签到,获得积分10
2分钟前
crazy发布了新的文献求助10
2分钟前
2分钟前
狂野的含烟完成签到 ,获得积分10
3分钟前
3分钟前
yiburongci完成签到,获得积分20
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
Lei完成签到,获得积分10
3分钟前
4分钟前
唐唐完成签到,获得积分10
4分钟前
4分钟前
WaWaQAQ发布了新的文献求助10
4分钟前
yiburongci关注了科研通微信公众号
4分钟前
WaWaQAQ完成签到,获得积分10
4分钟前
yiburongci发布了新的文献求助25
4分钟前
Gryff完成签到 ,获得积分10
5分钟前
萝卜猪完成签到,获得积分10
5分钟前
5分钟前
5分钟前
欢呼亦绿完成签到,获得积分10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
Jessica应助精明代灵采纳,获得10
5分钟前
大个应助安静的小蘑菇采纳,获得30
5分钟前
上官若男应助巫马百招采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
紫熊发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664535
求助须知:如何正确求助?哪些是违规求助? 4864753
关于积分的说明 15107992
捐赠科研通 4823177
什么是DOI,文献DOI怎么找? 2582040
邀请新用户注册赠送积分活动 1536144
关于科研通互助平台的介绍 1494545