亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A three-way classification with fuzzy decision trees

决策树 计算机科学 数据挖掘 增量决策树 模糊逻辑 人工智能 分类器(UML) 决策树学习 机器学习 模糊分类 模糊集 数学
作者
Xiaoyu Han,Xiubin Zhu,Witold Pedrycz,Zhiwu Li
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:132: 109788-109788 被引量:19
标识
DOI:10.1016/j.asoc.2022.109788
摘要

This study is concerned with the design of a three-way classification mechanism realized through combing fuzzy decision trees and expressing uncertainty associated with classification results. The fuzzy decision tree used in this study is constructed through the generalization of the commonly used decision trees. The notion of three-way decision model first proposed for the interpretation of rules generated in rough set approximation has been widely used in many fields. This study proposes an efficient way to flag data with high level of uncertainty with the classification realized by fuzzy decision trees, which is the capability that commonly used fuzzy decision trees do not have. The data identified in this way are left to users’ judgments or more advanced classification techniques. The developed mechanism is formed as a two-stage construct where a fuzzy decision tree is built by generalizing the Boolean classification boundaries of a pre-constructed decision tree using fuzzy sets and then determining the level of uncertainty to identify instances to be rejected due to a lack of sufficient confidence in their belongingness. The rejected instances that are difficult to process are classified as non-commitment cases and left to some further analyses. The rejection quality of the developed three-way classifier is quantified in terms of the classification accuracy and rejection coefficient. We also elaborate on striking a sound tradeoff between these two performance indicators. Experimental studies demonstrate that the developed mechanism could effectively improve the classification accuracy at the cost of a small proportion of the rejected instances and achieve better performance in comparison with other three-way decision models when generating a three-way decision output.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
李健的粉丝团团长应助lan采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
17秒前
lan完成签到,获得积分10
19秒前
陈同学完成签到 ,获得积分10
23秒前
lan发布了新的文献求助10
23秒前
chen完成签到 ,获得积分10
34秒前
sci2025opt完成签到 ,获得积分10
38秒前
siv完成签到,获得积分10
1分钟前
科研通AI6应助懦弱的丹秋采纳,获得10
1分钟前
科研兵发布了新的文献求助10
1分钟前
天天快乐应助shee采纳,获得10
1分钟前
搜集达人应助科研兵采纳,获得10
1分钟前
insomnia417完成签到,获得积分0
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
上官若男应助科研通管家采纳,获得10
3分钟前
朴素易梦发布了新的文献求助30
3分钟前
3分钟前
4分钟前
4分钟前
科研通AI6应助懦弱的丹秋采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
bkagyin应助科研通管家采纳,获得10
5分钟前
聪明的云完成签到 ,获得积分10
5分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
朴素易梦完成签到,获得积分10
7分钟前
小马甲应助John采纳,获得10
7分钟前
kuoping完成签到,获得积分0
7分钟前
7分钟前
John完成签到,获得积分10
7分钟前
John发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596189
求助须知:如何正确求助?哪些是违规求助? 4008262
关于积分的说明 12409027
捐赠科研通 3687193
什么是DOI,文献DOI怎么找? 2032271
邀请新用户注册赠送积分活动 1065522
科研通“疑难数据库(出版商)”最低求助积分说明 950827