A three-way classification with fuzzy decision trees

决策树 计算机科学 数据挖掘 增量决策树 模糊逻辑 人工智能 分类器(UML) 决策树学习 机器学习 模糊分类 模糊集 数学
作者
Xiaoyu Han,Xiubin Zhu,Witold Pedrycz,Zhiwu Li
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:132: 109788-109788 被引量:19
标识
DOI:10.1016/j.asoc.2022.109788
摘要

This study is concerned with the design of a three-way classification mechanism realized through combing fuzzy decision trees and expressing uncertainty associated with classification results. The fuzzy decision tree used in this study is constructed through the generalization of the commonly used decision trees. The notion of three-way decision model first proposed for the interpretation of rules generated in rough set approximation has been widely used in many fields. This study proposes an efficient way to flag data with high level of uncertainty with the classification realized by fuzzy decision trees, which is the capability that commonly used fuzzy decision trees do not have. The data identified in this way are left to users’ judgments or more advanced classification techniques. The developed mechanism is formed as a two-stage construct where a fuzzy decision tree is built by generalizing the Boolean classification boundaries of a pre-constructed decision tree using fuzzy sets and then determining the level of uncertainty to identify instances to be rejected due to a lack of sufficient confidence in their belongingness. The rejected instances that are difficult to process are classified as non-commitment cases and left to some further analyses. The rejection quality of the developed three-way classifier is quantified in terms of the classification accuracy and rejection coefficient. We also elaborate on striking a sound tradeoff between these two performance indicators. Experimental studies demonstrate that the developed mechanism could effectively improve the classification accuracy at the cost of a small proportion of the rejected instances and achieve better performance in comparison with other three-way decision models when generating a three-way decision output.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咖啡博士完成签到,获得积分10
刚刚
韭黄发布了新的文献求助10
1秒前
Singularity完成签到,获得积分0
3秒前
JamesPei应助zq采纳,获得10
4秒前
所所应助韭黄采纳,获得10
8秒前
江霭完成签到,获得积分10
11秒前
鲤鱼青槐完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
24秒前
缥缈的冰旋完成签到,获得积分10
24秒前
30秒前
31秒前
ailemonmint完成签到 ,获得积分10
31秒前
32秒前
玉ER完成签到,获得积分10
33秒前
34秒前
四十四次日落完成签到 ,获得积分10
34秒前
科研通AI2S应助羊二呆采纳,获得10
34秒前
英吉利25发布了新的文献求助10
36秒前
37秒前
水晶茶杯发布了新的文献求助10
38秒前
欢欢完成签到,获得积分10
39秒前
茯苓完成签到 ,获得积分10
41秒前
小鱼发布了新的文献求助10
42秒前
香香丿完成签到 ,获得积分10
42秒前
43秒前
万能图书馆应助zz123采纳,获得10
43秒前
杜康完成签到,获得积分10
43秒前
Cheung2121发布了新的文献求助10
43秒前
医学小王完成签到 ,获得积分10
44秒前
46秒前
刘涵完成签到 ,获得积分10
47秒前
帅气的沧海完成签到 ,获得积分10
48秒前
辣辣辣辣辣辣完成签到 ,获得积分10
51秒前
52秒前
55秒前
乐观半兰完成签到,获得积分10
57秒前
57秒前
小丸子和zz完成签到 ,获得积分10
58秒前
量子星尘发布了新的文献求助10
59秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038112
求助须知:如何正确求助?哪些是违规求助? 3575788
关于积分的说明 11373801
捐赠科研通 3305604
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022