A Software-Defined Directional Q-Learning Grid-Based Routing Platform and Its Two-Hop Trajectory-Based Routing Algorithm for Vehicular Ad Hoc Networks

计算机科学 动态源路由 地理路由 基于策略的路由 目的地顺序距离矢量路由 网格 计算机网络 链路状态路由协议 静态路由 分布式计算 网络数据包 多路径等成本路由 布线(电子设计自动化) 源路由 节点(物理) 路由协议 工程类 结构工程 数学 几何学
作者
Chen-Pin Yang,Chin-En Yen,Ing-Chau Chang
出处
期刊:Sensors [MDPI AG]
卷期号:22 (21): 8222-8222
标识
DOI:10.3390/s22218222
摘要

Dealing with the packet-routing problem is challenging in the V2X (Vehicle-to-Everything) network environment, where it suffers from the high mobility of vehicles and varied vehicle density at different times. Many related studies have been proposed to apply artificial intelligence models, such as Q-learning, which is a well-known reinforcement learning model, to analyze the historical trajectory data of vehicles and to further design an efficient packet-routing algorithm for V2X. In order to reduce the number of Q-tables generated by Q-learning, grid-based routing algorithms such as the QGrid have been proposed accordingly to divide the entire network environment into equal grids. This paper focuses on improving the defects of these grid-based routing algorithms, which only consider the vehicle density of each grid in Q-learning. Hence, we propose a Software-Defined Directional QGrid (SD-QGrid) routing platform in this paper. By deploying an SDN Control Node (CN) to perform centralized control for V2X, the SD-QGrid considers the directionality from the source to the destination, real-time positions and historical trajectory records between the adjacent grids of all vehicles. The SD-QGrid further proposes the flows of the offline Q-learning training process and the online routing decision process. The two-hop trajectory-based routing (THTR) algorithm, which depends on the source–destination directionality and the movement direction of the vehicle for the next two grids, is proposed as a vehicle node to forward its packets to the best next-hop neighbor node in real time. Finally, we use the real vehicle trajectory data of Taipei City to conduct extensive simulation experiments with respect to four transmission parameters. The simulation results prove that the SD-QGrid achieved an over 10% improvement in the average packet delivery ratio and an over 25% reduction in the average end-to-end delay at the cost of less than 2% in average overhead, compared with two well-known Q-learning grid-based routing algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
斯文的听南完成签到 ,获得积分10
1秒前
平常叫兽完成签到,获得积分20
1秒前
2秒前
我是老大应助跳跃的煜祺采纳,获得10
3秒前
den发布了新的文献求助10
3秒前
4秒前
4秒前
爱喝芬达完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
个性白开水完成签到,获得积分10
5秒前
fedehe发布了新的文献求助10
6秒前
shi333y完成签到,获得积分10
6秒前
7秒前
tutulunzi完成签到,获得积分10
7秒前
赵鑫宇发布了新的文献求助10
8秒前
芥末奶半糖加冰完成签到,获得积分10
8秒前
minbio发布了新的文献求助10
9秒前
9秒前
nong12123完成签到,获得积分10
10秒前
11秒前
Maple完成签到,获得积分10
12秒前
又村完成签到 ,获得积分10
12秒前
12秒前
坚定珍完成签到,获得积分10
12秒前
bkagyin应助faith采纳,获得30
13秒前
13秒前
14秒前
所所应助淡然的青旋采纳,获得10
14秒前
15秒前
kxm发布了新的文献求助10
15秒前
ttx完成签到,获得积分10
15秒前
TT发布了新的文献求助10
16秒前
冬日空虚完成签到,获得积分10
16秒前
orixero应助爱学习的超采纳,获得10
17秒前
领导范儿应助怕黑犀牛采纳,获得10
17秒前
小雨滴完成签到,获得积分10
18秒前
11马发布了新的文献求助10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660493
求助须知:如何正确求助?哪些是违规求助? 4834344
关于积分的说明 15090899
捐赠科研通 4819088
什么是DOI,文献DOI怎么找? 2579076
邀请新用户注册赠送积分活动 1533600
关于科研通互助平台的介绍 1492361