已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Software-Defined Directional Q-Learning Grid-Based Routing Platform and Its Two-Hop Trajectory-Based Routing Algorithm for Vehicular Ad Hoc Networks

计算机科学 动态源路由 地理路由 基于策略的路由 目的地顺序距离矢量路由 网格 计算机网络 链路状态路由协议 静态路由 分布式计算 网络数据包 多路径等成本路由 布线(电子设计自动化) 源路由 节点(物理) 路由协议 工程类 结构工程 数学 几何学
作者
Chen-Pin Yang,Chin-En Yen,Ing-Chau Chang
出处
期刊:Sensors [MDPI AG]
卷期号:22 (21): 8222-8222
标识
DOI:10.3390/s22218222
摘要

Dealing with the packet-routing problem is challenging in the V2X (Vehicle-to-Everything) network environment, where it suffers from the high mobility of vehicles and varied vehicle density at different times. Many related studies have been proposed to apply artificial intelligence models, such as Q-learning, which is a well-known reinforcement learning model, to analyze the historical trajectory data of vehicles and to further design an efficient packet-routing algorithm for V2X. In order to reduce the number of Q-tables generated by Q-learning, grid-based routing algorithms such as the QGrid have been proposed accordingly to divide the entire network environment into equal grids. This paper focuses on improving the defects of these grid-based routing algorithms, which only consider the vehicle density of each grid in Q-learning. Hence, we propose a Software-Defined Directional QGrid (SD-QGrid) routing platform in this paper. By deploying an SDN Control Node (CN) to perform centralized control for V2X, the SD-QGrid considers the directionality from the source to the destination, real-time positions and historical trajectory records between the adjacent grids of all vehicles. The SD-QGrid further proposes the flows of the offline Q-learning training process and the online routing decision process. The two-hop trajectory-based routing (THTR) algorithm, which depends on the source–destination directionality and the movement direction of the vehicle for the next two grids, is proposed as a vehicle node to forward its packets to the best next-hop neighbor node in real time. Finally, we use the real vehicle trajectory data of Taipei City to conduct extensive simulation experiments with respect to four transmission parameters. The simulation results prove that the SD-QGrid achieved an over 10% improvement in the average packet delivery ratio and an over 25% reduction in the average end-to-end delay at the cost of less than 2% in average overhead, compared with two well-known Q-learning grid-based routing algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长情正豪完成签到,获得积分10
1秒前
1秒前
鑫炜赵发布了新的文献求助10
1秒前
3秒前
高中生发布了新的文献求助10
3秒前
4秒前
禹丹烟发布了新的文献求助10
6秒前
在水一方发布了新的文献求助10
7秒前
7秒前
Hello应助June采纳,获得10
8秒前
巴啦啦发布了新的文献求助10
8秒前
10秒前
大模型应助谢a采纳,获得10
10秒前
啦啦康完成签到,获得积分10
10秒前
arno2233发布了新的文献求助30
12秒前
张继成完成签到,获得积分10
13秒前
沉静的万天完成签到 ,获得积分10
13秒前
14秒前
射天狼完成签到,获得积分10
15秒前
闫雨完成签到 ,获得积分10
15秒前
16秒前
动听松思发布了新的文献求助10
16秒前
16秒前
乙醇完成签到 ,获得积分10
17秒前
20秒前
零零完成签到 ,获得积分10
22秒前
dongzh发布了新的文献求助10
22秒前
Owen应助爱洗澡的猕猴桃采纳,获得30
22秒前
王颖完成签到,获得积分20
23秒前
mei完成签到,获得积分10
24秒前
大模型应助梦开始采纳,获得30
25秒前
乐乐完成签到,获得积分10
27秒前
李健的小迷弟应助孟冬采纳,获得10
27秒前
小桃枝发布了新的文献求助10
27秒前
砼砼发布了新的文献求助10
28秒前
LHQ完成签到,获得积分10
29秒前
29秒前
32秒前
李健的粉丝团团长应助Hedy采纳,获得10
33秒前
自信戒指完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312261
求助须知:如何正确求助?哪些是违规求助? 4456030
关于积分的说明 13865116
捐赠科研通 4344428
什么是DOI,文献DOI怎么找? 2385847
邀请新用户注册赠送积分活动 1380221
关于科研通互助平台的介绍 1348578