A Software-Defined Directional Q-Learning Grid-Based Routing Platform and Its Two-Hop Trajectory-Based Routing Algorithm for Vehicular Ad Hoc Networks

计算机科学 动态源路由 地理路由 基于策略的路由 目的地顺序距离矢量路由 网格 计算机网络 链路状态路由协议 静态路由 分布式计算 网络数据包 多路径等成本路由 布线(电子设计自动化) 源路由 节点(物理) 路由协议 工程类 结构工程 数学 几何学
作者
Chen-Pin Yang,Chin-En Yen,Ing-Chau Chang
出处
期刊:Sensors [MDPI AG]
卷期号:22 (21): 8222-8222
标识
DOI:10.3390/s22218222
摘要

Dealing with the packet-routing problem is challenging in the V2X (Vehicle-to-Everything) network environment, where it suffers from the high mobility of vehicles and varied vehicle density at different times. Many related studies have been proposed to apply artificial intelligence models, such as Q-learning, which is a well-known reinforcement learning model, to analyze the historical trajectory data of vehicles and to further design an efficient packet-routing algorithm for V2X. In order to reduce the number of Q-tables generated by Q-learning, grid-based routing algorithms such as the QGrid have been proposed accordingly to divide the entire network environment into equal grids. This paper focuses on improving the defects of these grid-based routing algorithms, which only consider the vehicle density of each grid in Q-learning. Hence, we propose a Software-Defined Directional QGrid (SD-QGrid) routing platform in this paper. By deploying an SDN Control Node (CN) to perform centralized control for V2X, the SD-QGrid considers the directionality from the source to the destination, real-time positions and historical trajectory records between the adjacent grids of all vehicles. The SD-QGrid further proposes the flows of the offline Q-learning training process and the online routing decision process. The two-hop trajectory-based routing (THTR) algorithm, which depends on the source–destination directionality and the movement direction of the vehicle for the next two grids, is proposed as a vehicle node to forward its packets to the best next-hop neighbor node in real time. Finally, we use the real vehicle trajectory data of Taipei City to conduct extensive simulation experiments with respect to four transmission parameters. The simulation results prove that the SD-QGrid achieved an over 10% improvement in the average packet delivery ratio and an over 25% reduction in the average end-to-end delay at the cost of less than 2% in average overhead, compared with two well-known Q-learning grid-based routing algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
ont-tnt完成签到,获得积分10
1秒前
驴小兔子发布了新的文献求助10
2秒前
FashionBoy应助咕噜采纳,获得10
2秒前
panhanfu完成签到,获得积分10
2秒前
陈陌陌完成签到,获得积分10
2秒前
3秒前
徐徐发布了新的文献求助10
3秒前
球球完成签到,获得积分10
4秒前
市区凤姐完成签到,获得积分10
4秒前
kyle发布了新的文献求助10
4秒前
天天快乐应助牛与马采纳,获得10
4秒前
Zrf完成签到,获得积分10
5秒前
zhangsan发布了新的文献求助10
6秒前
6秒前
zzzzlll发布了新的文献求助10
6秒前
九月鹰飞完成签到,获得积分10
6秒前
巫凝天发布了新的文献求助10
7秒前
美满的珠完成签到 ,获得积分10
7秒前
Jiny完成签到,获得积分10
7秒前
我是老大应助田田田采纳,获得10
7秒前
大大超人完成签到,获得积分10
7秒前
科研小白发布了新的文献求助10
8秒前
8秒前
Nancy0818完成签到 ,获得积分10
8秒前
lilili完成签到,获得积分10
8秒前
拾野之苹完成签到,获得积分10
8秒前
8秒前
ruirchen完成签到,获得积分10
9秒前
ergatoid完成签到,获得积分10
9秒前
byron完成签到 ,获得积分10
10秒前
Liu完成签到,获得积分10
10秒前
俭朴灵竹完成签到,获得积分10
10秒前
晓军完成签到,获得积分10
10秒前
求助人员应助zhangsan采纳,获得10
11秒前
zoe完成签到 ,获得积分10
11秒前
zd完成签到,获得积分10
11秒前
谨慎严青发布了新的文献求助10
11秒前
玖念完成签到,获得积分10
12秒前
布丁圆团发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977