A Software-Defined Directional Q-Learning Grid-Based Routing Platform and Its Two-Hop Trajectory-Based Routing Algorithm for Vehicular Ad Hoc Networks

计算机科学 动态源路由 地理路由 基于策略的路由 目的地顺序距离矢量路由 网格 计算机网络 链路状态路由协议 静态路由 分布式计算 网络数据包 多路径等成本路由 布线(电子设计自动化) 源路由 节点(物理) 路由协议 工程类 结构工程 数学 几何学
作者
Chen-Pin Yang,Chin-En Yen,Ing-Chau Chang
出处
期刊:Sensors [MDPI AG]
卷期号:22 (21): 8222-8222
标识
DOI:10.3390/s22218222
摘要

Dealing with the packet-routing problem is challenging in the V2X (Vehicle-to-Everything) network environment, where it suffers from the high mobility of vehicles and varied vehicle density at different times. Many related studies have been proposed to apply artificial intelligence models, such as Q-learning, which is a well-known reinforcement learning model, to analyze the historical trajectory data of vehicles and to further design an efficient packet-routing algorithm for V2X. In order to reduce the number of Q-tables generated by Q-learning, grid-based routing algorithms such as the QGrid have been proposed accordingly to divide the entire network environment into equal grids. This paper focuses on improving the defects of these grid-based routing algorithms, which only consider the vehicle density of each grid in Q-learning. Hence, we propose a Software-Defined Directional QGrid (SD-QGrid) routing platform in this paper. By deploying an SDN Control Node (CN) to perform centralized control for V2X, the SD-QGrid considers the directionality from the source to the destination, real-time positions and historical trajectory records between the adjacent grids of all vehicles. The SD-QGrid further proposes the flows of the offline Q-learning training process and the online routing decision process. The two-hop trajectory-based routing (THTR) algorithm, which depends on the source–destination directionality and the movement direction of the vehicle for the next two grids, is proposed as a vehicle node to forward its packets to the best next-hop neighbor node in real time. Finally, we use the real vehicle trajectory data of Taipei City to conduct extensive simulation experiments with respect to four transmission parameters. The simulation results prove that the SD-QGrid achieved an over 10% improvement in the average packet delivery ratio and an over 25% reduction in the average end-to-end delay at the cost of less than 2% in average overhead, compared with two well-known Q-learning grid-based routing algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助开心的凝荷采纳,获得10
刚刚
量子星尘发布了新的文献求助30
1秒前
kk发布了新的文献求助10
1秒前
2秒前
2秒前
保持李姓完成签到,获得积分20
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
Nancy发布了新的文献求助30
3秒前
5秒前
6秒前
我在这里发布了新的文献求助10
7秒前
OneFighter应助Tianshun采纳,获得20
7秒前
小田发布了新的文献求助10
7秒前
7秒前
木木发布了新的文献求助30
8秒前
8秒前
9秒前
9秒前
10秒前
11秒前
11秒前
CR完成签到,获得积分10
11秒前
kk完成签到,获得积分10
12秒前
火星上的宫苴完成签到 ,获得积分10
12秒前
13秒前
KKLUV发布了新的文献求助50
14秒前
CR发布了新的文献求助10
14秒前
斯文文昊发布了新的文献求助10
15秒前
华仔应助www采纳,获得10
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
caca完成签到 ,获得积分10
16秒前
16秒前
hhhhhy发布了新的文献求助10
16秒前
instill发布了新的文献求助10
16秒前
chinaproteome发布了新的文献求助10
16秒前
小羽发布了新的文献求助10
16秒前
李健应助光亮绮山采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5730086
求助须知:如何正确求助?哪些是违规求助? 5321638
关于积分的说明 15317987
捐赠科研通 4876763
什么是DOI,文献DOI怎么找? 2619608
邀请新用户注册赠送积分活动 1569044
关于科研通互助平台的介绍 1525658