A Software-Defined Directional Q-Learning Grid-Based Routing Platform and Its Two-Hop Trajectory-Based Routing Algorithm for Vehicular Ad Hoc Networks

计算机科学 动态源路由 地理路由 基于策略的路由 目的地顺序距离矢量路由 网格 计算机网络 链路状态路由协议 静态路由 分布式计算 网络数据包 多路径等成本路由 布线(电子设计自动化) 源路由 节点(物理) 路由协议 工程类 结构工程 数学 几何学
作者
Chen-Pin Yang,Chin-En Yen,Ing-Chau Chang
出处
期刊:Sensors [MDPI AG]
卷期号:22 (21): 8222-8222
标识
DOI:10.3390/s22218222
摘要

Dealing with the packet-routing problem is challenging in the V2X (Vehicle-to-Everything) network environment, where it suffers from the high mobility of vehicles and varied vehicle density at different times. Many related studies have been proposed to apply artificial intelligence models, such as Q-learning, which is a well-known reinforcement learning model, to analyze the historical trajectory data of vehicles and to further design an efficient packet-routing algorithm for V2X. In order to reduce the number of Q-tables generated by Q-learning, grid-based routing algorithms such as the QGrid have been proposed accordingly to divide the entire network environment into equal grids. This paper focuses on improving the defects of these grid-based routing algorithms, which only consider the vehicle density of each grid in Q-learning. Hence, we propose a Software-Defined Directional QGrid (SD-QGrid) routing platform in this paper. By deploying an SDN Control Node (CN) to perform centralized control for V2X, the SD-QGrid considers the directionality from the source to the destination, real-time positions and historical trajectory records between the adjacent grids of all vehicles. The SD-QGrid further proposes the flows of the offline Q-learning training process and the online routing decision process. The two-hop trajectory-based routing (THTR) algorithm, which depends on the source–destination directionality and the movement direction of the vehicle for the next two grids, is proposed as a vehicle node to forward its packets to the best next-hop neighbor node in real time. Finally, we use the real vehicle trajectory data of Taipei City to conduct extensive simulation experiments with respect to four transmission parameters. The simulation results prove that the SD-QGrid achieved an over 10% improvement in the average packet delivery ratio and an over 25% reduction in the average end-to-end delay at the cost of less than 2% in average overhead, compared with two well-known Q-learning grid-based routing algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
浮浮世世发布了新的文献求助50
刚刚
孚游完成签到,获得积分10
刚刚
orixero应助dio采纳,获得10
刚刚
刚刚
泽牧发布了新的文献求助10
刚刚
浪里白条完成签到,获得积分10
1秒前
赘婿应助漂亮的抽屉采纳,获得10
1秒前
欣喜的素完成签到,获得积分10
1秒前
英俊的铭应助hhhhhh采纳,获得10
2秒前
2秒前
2秒前
3秒前
3秒前
阳光下的沙滩城堡完成签到,获得积分10
4秒前
NexusExplorer应助刘雨森采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
6秒前
書生应助科研通管家采纳,获得20
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
joeay完成签到 ,获得积分10
6秒前
蓝韵应助科研通管家采纳,获得30
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
轻松元柏完成签到,获得积分10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
Manphie应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
ChenxiPan发布了新的文献求助10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
7秒前
書生应助科研通管家采纳,获得20
7秒前
乔垣结衣发布了新的文献求助10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351421
求助须知:如何正确求助?哪些是违规求助? 4484506
关于积分的说明 13959313
捐赠科研通 4384100
什么是DOI,文献DOI怎么找? 2408752
邀请新用户注册赠送积分活动 1401355
关于科研通互助平台的介绍 1374851