A Software-Defined Directional Q-Learning Grid-Based Routing Platform and Its Two-Hop Trajectory-Based Routing Algorithm for Vehicular Ad Hoc Networks

计算机科学 动态源路由 地理路由 基于策略的路由 目的地顺序距离矢量路由 网格 计算机网络 链路状态路由协议 静态路由 分布式计算 网络数据包 多路径等成本路由 布线(电子设计自动化) 源路由 节点(物理) 路由协议 工程类 结构工程 数学 几何学
作者
Chen-Pin Yang,Chin-En Yen,Ing-Chau Chang
出处
期刊:Sensors [MDPI AG]
卷期号:22 (21): 8222-8222
标识
DOI:10.3390/s22218222
摘要

Dealing with the packet-routing problem is challenging in the V2X (Vehicle-to-Everything) network environment, where it suffers from the high mobility of vehicles and varied vehicle density at different times. Many related studies have been proposed to apply artificial intelligence models, such as Q-learning, which is a well-known reinforcement learning model, to analyze the historical trajectory data of vehicles and to further design an efficient packet-routing algorithm for V2X. In order to reduce the number of Q-tables generated by Q-learning, grid-based routing algorithms such as the QGrid have been proposed accordingly to divide the entire network environment into equal grids. This paper focuses on improving the defects of these grid-based routing algorithms, which only consider the vehicle density of each grid in Q-learning. Hence, we propose a Software-Defined Directional QGrid (SD-QGrid) routing platform in this paper. By deploying an SDN Control Node (CN) to perform centralized control for V2X, the SD-QGrid considers the directionality from the source to the destination, real-time positions and historical trajectory records between the adjacent grids of all vehicles. The SD-QGrid further proposes the flows of the offline Q-learning training process and the online routing decision process. The two-hop trajectory-based routing (THTR) algorithm, which depends on the source–destination directionality and the movement direction of the vehicle for the next two grids, is proposed as a vehicle node to forward its packets to the best next-hop neighbor node in real time. Finally, we use the real vehicle trajectory data of Taipei City to conduct extensive simulation experiments with respect to four transmission parameters. The simulation results prove that the SD-QGrid achieved an over 10% improvement in the average packet delivery ratio and an over 25% reduction in the average end-to-end delay at the cost of less than 2% in average overhead, compared with two well-known Q-learning grid-based routing algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zqq完成签到,获得积分10
刚刚
勤劳的硬币完成签到,获得积分10
1秒前
1秒前
科研通AI2S应助可可可刻采纳,获得10
1秒前
gejing完成签到,获得积分10
1秒前
1秒前
TCL完成签到,获得积分10
2秒前
虚心的迎荷完成签到,获得积分10
3秒前
开朗娩发布了新的文献求助10
3秒前
4秒前
QP发布了新的文献求助10
4秒前
5秒前
5秒前
eui完成签到,获得积分10
5秒前
5秒前
熊二发布了新的文献求助10
6秒前
酷波er应助轻松的天真采纳,获得10
6秒前
6秒前
所所应助伈X采纳,获得10
6秒前
Folivo完成签到,获得积分10
7秒前
lusgul完成签到 ,获得积分10
7秒前
8秒前
qqqq发布了新的文献求助30
8秒前
9秒前
丁一发布了新的文献求助10
9秒前
隐形曼青应助kakaC采纳,获得10
9秒前
小蘑菇应助子车谷波采纳,获得20
10秒前
10秒前
开心夏云应助郎梟采纳,获得10
10秒前
living笑白完成签到,获得积分10
11秒前
11秒前
生动秋白发布了新的文献求助10
11秒前
海白菜995完成签到,获得积分10
11秒前
LLL完成签到,获得积分10
11秒前
阮绿凝发布了新的文献求助10
11秒前
乐乐发布了新的文献求助10
11秒前
11秒前
等待完成签到 ,获得积分10
12秒前
12秒前
卖艺的读书人完成签到 ,获得积分10
12秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156848
求助须知:如何正确求助?哪些是违规求助? 2808269
关于积分的说明 7877026
捐赠科研通 2466691
什么是DOI,文献DOI怎么找? 1312998
科研通“疑难数据库(出版商)”最低求助积分说明 630334
版权声明 601919