A Software-Defined Directional Q-Learning Grid-Based Routing Platform and Its Two-Hop Trajectory-Based Routing Algorithm for Vehicular Ad Hoc Networks

计算机科学 动态源路由 地理路由 基于策略的路由 目的地顺序距离矢量路由 网格 计算机网络 链路状态路由协议 静态路由 分布式计算 网络数据包 多路径等成本路由 布线(电子设计自动化) 源路由 节点(物理) 路由协议 工程类 结构工程 数学 几何学
作者
Chen-Pin Yang,Chin-En Yen,Ing-Chau Chang
出处
期刊:Sensors [MDPI AG]
卷期号:22 (21): 8222-8222
标识
DOI:10.3390/s22218222
摘要

Dealing with the packet-routing problem is challenging in the V2X (Vehicle-to-Everything) network environment, where it suffers from the high mobility of vehicles and varied vehicle density at different times. Many related studies have been proposed to apply artificial intelligence models, such as Q-learning, which is a well-known reinforcement learning model, to analyze the historical trajectory data of vehicles and to further design an efficient packet-routing algorithm for V2X. In order to reduce the number of Q-tables generated by Q-learning, grid-based routing algorithms such as the QGrid have been proposed accordingly to divide the entire network environment into equal grids. This paper focuses on improving the defects of these grid-based routing algorithms, which only consider the vehicle density of each grid in Q-learning. Hence, we propose a Software-Defined Directional QGrid (SD-QGrid) routing platform in this paper. By deploying an SDN Control Node (CN) to perform centralized control for V2X, the SD-QGrid considers the directionality from the source to the destination, real-time positions and historical trajectory records between the adjacent grids of all vehicles. The SD-QGrid further proposes the flows of the offline Q-learning training process and the online routing decision process. The two-hop trajectory-based routing (THTR) algorithm, which depends on the source–destination directionality and the movement direction of the vehicle for the next two grids, is proposed as a vehicle node to forward its packets to the best next-hop neighbor node in real time. Finally, we use the real vehicle trajectory data of Taipei City to conduct extensive simulation experiments with respect to four transmission parameters. The simulation results prove that the SD-QGrid achieved an over 10% improvement in the average packet delivery ratio and an over 25% reduction in the average end-to-end delay at the cost of less than 2% in average overhead, compared with two well-known Q-learning grid-based routing algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白菜完成签到,获得积分10
1秒前
2秒前
zzz关闭了zzz文献求助
3秒前
JIEYU完成签到,获得积分20
3秒前
泡泡糖发布了新的文献求助10
3秒前
萌酱完成签到,获得积分10
4秒前
伍文凯发布了新的文献求助10
4秒前
4秒前
4秒前
YTT发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
墨羽完成签到,获得积分10
6秒前
脑洞疼应助saltttyyy采纳,获得10
6秒前
6秒前
6秒前
一支蜡笔发布了新的文献求助10
7秒前
2799完成签到,获得积分10
8秒前
努力的学发布了新的文献求助10
9秒前
10秒前
做一只快乐的猪猪侠完成签到,获得积分20
10秒前
10秒前
fancy发布了新的文献求助10
11秒前
傻傻的小丑孩完成签到,获得积分10
12秒前
12秒前
今后应助湿地小怪兽采纳,获得10
12秒前
CodeCraft应助kk采纳,获得10
13秒前
泡泡糖完成签到,获得积分10
15秒前
彭于晏应助NGU采纳,获得10
15秒前
脆脆鲨完成签到 ,获得积分10
15秒前
闪闪平灵发布了新的文献求助10
16秒前
浮游应助dcc采纳,获得10
16秒前
科研通AI6应助羞涩的寒松采纳,获得10
16秒前
17秒前
18秒前
北北北发布了新的文献求助10
19秒前
19秒前
19秒前
19秒前
wangli发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461138
求助须知:如何正确求助?哪些是违规求助? 4566175
关于积分的说明 14303831
捐赠科研通 4491884
什么是DOI,文献DOI怎么找? 2460490
邀请新用户注册赠送积分活动 1449811
关于科研通互助平台的介绍 1425582