Deep learning-based detection of aluminum casting defects and their types

计算机科学 深度学习 人工智能 过程(计算) 无损检测 目标检测 铸造 压铸 人工神经网络 汽车工业 计算机视觉 机器学习 模式识别(心理学) 材料科学 模具(集成电路) 复合材料 工程类 医学 放射科 航空航天工程 操作系统
作者
İsmail Enes Parlak,Erdal Emel
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:118: 105636-105636 被引量:35
标识
DOI:10.1016/j.engappai.2022.105636
摘要

Due to its unique properties, high-pressure aluminum die-casting parts are used quite often, especially in the automotive industry. However, die-casting is a process which requires non-destructive testing of the critical components using technologies such as X-ray to examine the internal defects that are not otherwise visible. Such a timeconsuming visual inspection requires well-trained human specialists with the utmost attention. In this study, state-of-the-art deep learning-based object detection methods were trained using an X-ray image dataset of aluminum parts to detect internal defects and predict their types without human attention. The Al-Cast image dataset used in this study contains 3466 images of parts produced in high-pressure die casting machines. It is shared as an open-access original database for the nondestructive testing (NDT) community. ASTM standard definitions for aluminum casting defects are used in determining their types, and to the best of our knowledge, this novel approach is the first in the deep learning literature. Among the 12 deep learning-based object detection methods used for comparison, YOLOv5 versions yielded the highest detection accuracy (0.956 mAP) with the shortest training time (0.75 h). In addition, tests were performed for both original and contrast enhanced images on 348 test images. YOLOv5m performed an accurate detection performance of 95.9%. Additionally, YOLOv5n can process 132 images per second. This study can be considered the first step of an artificial intelligence product that can detect internal defects of aluminum casting parts with industrial standards and explain the relationship between highpressure injection die casting parameters and these defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飘逸锦程发布了新的文献求助10
刚刚
猪猪完成签到,获得积分10
刚刚
2秒前
2秒前
暮霭沉沉应助风车采纳,获得20
2秒前
默默书竹发布了新的文献求助10
2秒前
hrbykdxly完成签到,获得积分10
3秒前
呆桃发布了新的文献求助10
3秒前
3秒前
华仔应助千瓦时醒醒采纳,获得10
3秒前
包子发布了新的文献求助10
3秒前
香蕉觅云应助鱿鱼采纳,获得10
3秒前
sumliet完成签到,获得积分10
5秒前
5秒前
口口完成签到 ,获得积分10
5秒前
廖紊完成签到,获得积分10
6秒前
6秒前
uu完成签到,获得积分10
6秒前
典雅涵瑶发布了新的文献求助10
7秒前
22完成签到,获得积分10
7秒前
7秒前
慢跑跑不动的肥仔完成签到,获得积分10
8秒前
简单的冬瓜完成签到,获得积分10
8秒前
心海发布了新的文献求助10
8秒前
细腻沅完成签到,获得积分10
9秒前
9秒前
小武发布了新的文献求助10
9秒前
liucc完成签到,获得积分10
9秒前
9秒前
9秒前
yiyiyi完成签到 ,获得积分10
10秒前
沉静的飞槐完成签到,获得积分20
10秒前
梅子酒完成签到,获得积分10
10秒前
11秒前
11秒前
YY给YY的求助进行了留言
11秒前
zyc1111111完成签到,获得积分10
11秒前
打打应助安详伯云采纳,获得20
12秒前
感动语蝶完成签到,获得积分10
13秒前
13秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3253737
求助须知:如何正确求助?哪些是违规求助? 2896209
关于积分的说明 8290919
捐赠科研通 2564961
什么是DOI,文献DOI怎么找? 1392730
科研通“疑难数据库(出版商)”最低求助积分说明 652258
邀请新用户注册赠送积分活动 629651