An explainable predictive model for suicide attempt risk using an ensemble learning and Shapley Additive Explanations (SHAP) approach

Boosting(机器学习) 随机森林 鉴定(生物学) 机器学习 自杀风险 自杀未遂 集成学习 预测建模 自杀意念 心理学 人工智能 计算机科学 毒物控制 自杀预防 医学 医疗急救 生物 植物
作者
Noratikah Nordin,Zurinahni Zainol,Mohd Halim Mohd Noor,Lai Fong Chan
出处
期刊:Asian Journal of Psychiatry [Elsevier]
卷期号:79: 103316-103316 被引量:8
标识
DOI:10.1016/j.ajp.2022.103316
摘要

Machine learning approaches have been used to develop suicide attempt predictive models recently and have been shown to have a good performance. However, those proposed models have difficulty interpreting and understanding why an individual has suicidal attempts. To overcome this issue, the identification of features such as risk factors in predicting suicide attempts is important for clinicians to make decisions. Therefore, the aim of this study is to propose an explainable predictive model to predict and analyse the importance of features for suicide attempts. This model can also provide explanations to improve the clinical understanding of suicide attempts. Two complex ensemble learning models, namely Random Forest and Gradient Boosting with an explanatory model (SHapley Additive exPlanations (SHAP)) have been constructed. The models are used for predictive interpretation and understanding of the importance of the features. The experiment shows that both models with SHAP are able to interpret and understand the nature of an individual's predictions with suicide attempts. However, compared with Random Forest, the results show that Gradient Boosting with SHAP achieves higher accuracy and the analyses found that history of suicide attempts, suicidal ideation, and ethnicity as the main predictors for suicide attempts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dynvent完成签到,获得积分10
刚刚
刚刚
orixero应助PC采纳,获得10
刚刚
TtCherry完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
chr发布了新的文献求助10
2秒前
3秒前
桐桐应助王二采纳,获得10
3秒前
可爱的函函应助周周采纳,获得10
4秒前
852应助海宁采纳,获得10
5秒前
Ansong发布了新的文献求助10
6秒前
DDD发布了新的文献求助10
6秒前
6秒前
么么么发布了新的文献求助10
7秒前
充电宝应助chr采纳,获得10
8秒前
Wxj246801发布了新的文献求助20
8秒前
充电宝应助pp采纳,获得10
9秒前
白大碗发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
menger完成签到,获得积分10
12秒前
ailuomanga完成签到,获得积分10
12秒前
13秒前
柠檬完成签到,获得积分10
14秒前
ガキ完成签到,获得积分0
15秒前
咯咚发布了新的文献求助10
16秒前
只爱龙虾发布了新的文献求助150
16秒前
贪玩手链发布了新的文献求助20
16秒前
doctor赵完成签到,获得积分10
17秒前
海宁发布了新的文献求助10
17秒前
18秒前
八九不离十完成签到,获得积分10
18秒前
55完成签到 ,获得积分10
18秒前
20秒前
23秒前
24秒前
Gigi发布了新的文献求助10
24秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3219342
求助须知:如何正确求助?哪些是违规求助? 2868226
关于积分的说明 8159905
捐赠科研通 2535266
什么是DOI,文献DOI怎么找? 1367669
科研通“疑难数据库(出版商)”最低求助积分说明 645090
邀请新用户注册赠送积分活动 618332