An explainable predictive model for suicide attempt risk using an ensemble learning and Shapley Additive Explanations (SHAP) approach

Boosting(机器学习) 随机森林 鉴定(生物学) 机器学习 自杀风险 自杀未遂 集成学习 预测建模 自杀意念 心理学 人工智能 计算机科学 毒物控制 自杀预防 医学 医疗急救 植物 生物
作者
Noratikah Nordin,Zurinahni Zainol,Mohd Halim Mohd Noor,Lai Fong Chan
出处
期刊:Asian Journal of Psychiatry [Elsevier]
卷期号:79: 103316-103316 被引量:90
标识
DOI:10.1016/j.ajp.2022.103316
摘要

Machine learning approaches have been used to develop suicide attempt predictive models recently and have been shown to have a good performance. However, those proposed models have difficulty interpreting and understanding why an individual has suicidal attempts. To overcome this issue, the identification of features such as risk factors in predicting suicide attempts is important for clinicians to make decisions. Therefore, the aim of this study is to propose an explainable predictive model to predict and analyse the importance of features for suicide attempts. This model can also provide explanations to improve the clinical understanding of suicide attempts. Two complex ensemble learning models, namely Random Forest and Gradient Boosting with an explanatory model (SHapley Additive exPlanations (SHAP)) have been constructed. The models are used for predictive interpretation and understanding of the importance of the features. The experiment shows that both models with SHAP are able to interpret and understand the nature of an individual's predictions with suicide attempts. However, compared with Random Forest, the results show that Gradient Boosting with SHAP achieves higher accuracy and the analyses found that history of suicide attempts, suicidal ideation, and ethnicity as the main predictors for suicide attempts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zm完成签到,获得积分10
1秒前
可爱的函函应助邓焕然采纳,获得10
1秒前
科研通AI6.1应助王某采纳,获得10
1秒前
小太阳发布了新的文献求助10
1秒前
白betty完成签到,获得积分10
1秒前
3秒前
3秒前
叽歪提发布了新的文献求助10
4秒前
2522121033发布了新的文献求助10
4秒前
徐zhipei完成签到 ,获得积分10
4秒前
ding应助sun采纳,获得10
5秒前
Rookie完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
桃子完成签到,获得积分10
8秒前
wu完成签到,获得积分10
8秒前
8秒前
9秒前
认真子默完成签到,获得积分10
9秒前
合法合规完成签到,获得积分10
9秒前
9秒前
情怀应助黄芪2号采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
1212431完成签到,获得积分10
9秒前
10秒前
smottom应助HHZ采纳,获得10
11秒前
bsxu完成签到,获得积分10
11秒前
wxx771510625完成签到 ,获得积分10
11秒前
11秒前
12秒前
土土发布了新的文献求助10
12秒前
JamesPei应助地球撞火星采纳,获得10
13秒前
13秒前
Jacqueline777完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5766395
求助须知:如何正确求助?哪些是违规求助? 5565174
关于积分的说明 15412411
捐赠科研通 4900635
什么是DOI,文献DOI怎么找? 2636548
邀请新用户注册赠送积分活动 1584789
关于科研通互助平台的介绍 1540042