亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning Identifies Intelligible Predictors of Poor Prognosis in Chronic Kidney Disease

支持向量机 Lasso(编程语言) 人工智能 随机森林 肾脏疾病 逻辑回归 机器学习 计算机科学 人工神经网络 接收机工作特性 弹性网正则化 特征选择 医学 模式识别(心理学) 内科学 万维网
作者
Qingpeng Zhang,Ping Liang,Jiannan Yang,Weilan Wang,Guanjie Yuan,Min Han,Zhen Li
出处
期刊:Research Square - Research Square 被引量:2
标识
DOI:10.21203/rs.3.rs-1577772/v1
摘要

Abstract Purpose: To explore the performance and intelligibility of machine-learning and deep-learning models on end-stage renal disease (ESRD) prediction, based on readily-accessible clinical and laboratory features of patients suffering from chronic kidney disease (CKD). Materials and Methods: This single-center retrospective study included 2,382 patients diagnosed with CKD, of which 1,765 were included in the modelling analysis. Eight models (Logistic Regression (LR); Ridge Regression Classification (RRC); Least Absolute Shrinkage and Selection Operator (LASSO); Support Vector Machine (SVM) with a Gaussian kernel (SVM-RBF); and a linear kernel (SVM-Linear); Random Forest (RF); XGBoost; and Deep Neural Network (DNN)) were used to predict whether one person suffering from CKD would progress to ESRD within three years based on basic demographics, and clinical and comorbidity information. LASSO, RF, and XGBoost were introduced to screen the most significant markers to ESRD from the input features. For the DNN model, we introduced four advanced attribution methods (Integrated Gradients, DeepLIFT, GradientSHAP, and Feature Ablation) to enhance model intelligibility. Results: Age, follow-up duration, and 17 biochemical test outcomes (for instance, serum creatinine and hemoglobin) showed significant differences between patients in four CKD stages. The DNN model achieved an area under the receiver operating characteristic curve (AUC-ROC) of 0.8843, which was significantly higher than that of baseline models. Nonlinear machine learning models (SVM-RBF, RF, XGBoost, and DNN) generally outperformed linear ones (LR, RRC, LASSO, and SVM-Linear). The interpretation generated by DNN with attribution methods, RF, and XGBoost were consistent with clinical knowledge, whereas LASSO-based interpretation was inconsistent. Hematuria, proteinuria, potassium, urine albumin to creatinine ratio (ACR) were positively associated with the progression of CKD, while eGFR and urine creatinine were negatively associated with the progression of CKD. Hematuria is the most important independent risk predictor for the progression of diabetic nephropathy and urolithiasis. Conclusion: The adopted DNN with attribution algorithms extracted intelligible features of CKD progression. In addition, the DNN model identified a number of critical, but under-reported features, such as hematuria, that may be novel markers for the progression of CKD. This study provides physicians solid data-driven evidence in using machine learning and deep learning models for CKD clinical management and treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zhangweny完成签到,获得积分10
4秒前
xl_c完成签到 ,获得积分10
4秒前
cc发布了新的文献求助10
6秒前
zhangweny发布了新的文献求助10
6秒前
10秒前
10秒前
11秒前
研友_VZG7GZ应助cc采纳,获得10
11秒前
12秒前
ViVi发布了新的文献求助10
16秒前
天注定发布了新的文献求助10
16秒前
17秒前
17秒前
cc发布了新的文献求助10
18秒前
星辰大海应助BeanHahn采纳,获得10
18秒前
zhuxiaoyue完成签到,获得积分10
21秒前
24秒前
33秒前
33秒前
桐桐应助喝可乐也很好采纳,获得20
36秒前
君兰完成签到,获得积分10
37秒前
38秒前
40秒前
slby完成签到 ,获得积分10
41秒前
君兰发布了新的文献求助10
43秒前
友好碧完成签到 ,获得积分10
45秒前
乐观的月亮完成签到,获得积分10
50秒前
50秒前
zhuxiaoyue发布了新的文献求助10
50秒前
打打应助辉辉采纳,获得10
50秒前
美美完成签到,获得积分20
52秒前
55秒前
57秒前
59秒前
BeanHahn发布了新的文献求助10
59秒前
1分钟前
阿离完成签到,获得积分10
1分钟前
1分钟前
无题完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714225
求助须知:如何正确求助?哪些是违规求助? 5221821
关于积分的说明 15272955
捐赠科研通 4865714
什么是DOI,文献DOI怎么找? 2612313
邀请新用户注册赠送积分活动 1562449
关于科研通互助平台的介绍 1519671