Deep Learning Identifies Intelligible Predictors of Poor Prognosis in Chronic Kidney Disease

支持向量机 Lasso(编程语言) 人工智能 随机森林 肾脏疾病 逻辑回归 机器学习 计算机科学 人工神经网络 接收机工作特性 弹性网正则化 特征选择 医学 模式识别(心理学) 内科学 万维网
作者
Qingpeng Zhang,Ping Liang,Jiannan Yang,Weilan Wang,Guanjie Yuan,Min Han,Zhen Li
出处
期刊:Research Square - Research Square 被引量:2
标识
DOI:10.21203/rs.3.rs-1577772/v1
摘要

Abstract Purpose: To explore the performance and intelligibility of machine-learning and deep-learning models on end-stage renal disease (ESRD) prediction, based on readily-accessible clinical and laboratory features of patients suffering from chronic kidney disease (CKD). Materials and Methods: This single-center retrospective study included 2,382 patients diagnosed with CKD, of which 1,765 were included in the modelling analysis. Eight models (Logistic Regression (LR); Ridge Regression Classification (RRC); Least Absolute Shrinkage and Selection Operator (LASSO); Support Vector Machine (SVM) with a Gaussian kernel (SVM-RBF); and a linear kernel (SVM-Linear); Random Forest (RF); XGBoost; and Deep Neural Network (DNN)) were used to predict whether one person suffering from CKD would progress to ESRD within three years based on basic demographics, and clinical and comorbidity information. LASSO, RF, and XGBoost were introduced to screen the most significant markers to ESRD from the input features. For the DNN model, we introduced four advanced attribution methods (Integrated Gradients, DeepLIFT, GradientSHAP, and Feature Ablation) to enhance model intelligibility. Results: Age, follow-up duration, and 17 biochemical test outcomes (for instance, serum creatinine and hemoglobin) showed significant differences between patients in four CKD stages. The DNN model achieved an area under the receiver operating characteristic curve (AUC-ROC) of 0.8843, which was significantly higher than that of baseline models. Nonlinear machine learning models (SVM-RBF, RF, XGBoost, and DNN) generally outperformed linear ones (LR, RRC, LASSO, and SVM-Linear). The interpretation generated by DNN with attribution methods, RF, and XGBoost were consistent with clinical knowledge, whereas LASSO-based interpretation was inconsistent. Hematuria, proteinuria, potassium, urine albumin to creatinine ratio (ACR) were positively associated with the progression of CKD, while eGFR and urine creatinine were negatively associated with the progression of CKD. Hematuria is the most important independent risk predictor for the progression of diabetic nephropathy and urolithiasis. Conclusion: The adopted DNN with attribution algorithms extracted intelligible features of CKD progression. In addition, the DNN model identified a number of critical, but under-reported features, such as hematuria, that may be novel markers for the progression of CKD. This study provides physicians solid data-driven evidence in using machine learning and deep learning models for CKD clinical management and treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
科研通AI6应助Xjx6519采纳,获得20
1秒前
魔幻冰棍发布了新的文献求助10
3秒前
BowieHuang应助白白采纳,获得10
3秒前
mirrovo完成签到 ,获得积分10
3秒前
自然的平蓝完成签到,获得积分10
5秒前
深情安青应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
Linos应助科研通管家采纳,获得10
7秒前
蓝天应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
蓝天应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
爆米花应助1816013153采纳,获得30
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
蓝天应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
科研菜j应助科研通管家采纳,获得20
8秒前
wanci应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
蓝天应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
Duke_ethan完成签到,获得积分10
12秒前
Arslan完成签到,获得积分20
15秒前
SUN完成签到,获得积分10
18秒前
闪闪航空完成签到,获得积分10
18秒前
24秒前
科研通AI2S应助好好哒采纳,获得20
27秒前
科研通AI6应助sssshhh采纳,获得10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557938
求助须知:如何正确求助?哪些是违规求助? 4642910
关于积分的说明 14669614
捐赠科研通 4584414
什么是DOI,文献DOI怎么找? 2514801
邀请新用户注册赠送积分活动 1488970
关于科研通互助平台的介绍 1459614