Non-invasive blood glucose sensing by machine learning of optic fiber-based speckle pattern variation

斑点图案 多模光纤 包层(金属加工) 计算机科学 光纤 材料科学 生物医学工程 光纤传感器 人工智能 医学 电信 冶金
作者
Deep Pal,Sergey Agadarov,Yevgeny Beiderman,Yafim Beiderman,Amitesh Kumar,Zeev Zalevsky
出处
期刊:Journal of Biomedical Optics 卷期号:27 (09) 被引量:11
标识
DOI:10.1117/1.jbo.27.9.097001
摘要

The ability to perform frequent non-invasive monitoring of glucose in the bloodstream is very applicable for diabetic patients.We experimentally verified a non-invasive multimode fiber-based technique for sensing glucose concentration in the bloodstream by extracting and analyzing the collected speckle patterns.The proposed sensor consists of a laser source, digital camera, computer, multimode fiber, and alternating current (AC) generated magnetic field source. The experiments were performed using a covered (with cladding and jacket) and uncovered (without cladding and jacket) multimode fiber touching the skin under a magnetic field and without it. The subject's finger was placed on a fiber to detect the glucose concentration. The method tracks variations in the speckle patterns due to light interaction with the bloodstream affected by blood glucose.The uncovered fiber placed above the finger under the AC magnetic field (150 G) at 140 Hz was found to have a lock-in amplification role, improving the glucose detection precision. The application of the machine learning algorithms in preprocessed speckle pattern data increase glucose measurement accuracy. Classification of the speckle patterns for uncovered fiber under the AC magnetic field allowed for detection of the blood glucose with high accuracy for all tested subjects compared with other tested configurations.The proposed technique was theoretically analyzed and experimentally validated in this work. The results were verified by the traditional finger-prick method, which was also used for classification as a conventional reference marker of blood glucose levels. The main goal of the proposed technique was to develop a non-invasive, low-cost blood glucose sensor for easy use by humans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ting发布了新的文献求助10
刚刚
1秒前
18062677029完成签到 ,获得积分10
1秒前
欣喜十八完成签到,获得积分10
7秒前
11秒前
12秒前
李-完成签到,获得积分10
12秒前
wish完成签到 ,获得积分10
12秒前
问天完成签到,获得积分10
13秒前
不咸怎么叫盐焗鸡翅完成签到,获得积分10
14秒前
一一发布了新的文献求助10
14秒前
xinxin完成签到,获得积分20
15秒前
17秒前
冷傲的小之完成签到 ,获得积分10
17秒前
自恋人发布了新的文献求助10
18秒前
冷酷雅容完成签到,获得积分10
18秒前
北彧发布了新的文献求助10
19秒前
Soybean发布了新的文献求助10
22秒前
23秒前
23秒前
langwang完成签到,获得积分10
25秒前
25秒前
Bismarck发布了新的文献求助10
27秒前
Wanyin发布了新的文献求助10
29秒前
29秒前
FashionBoy应助科研通管家采纳,获得10
29秒前
顾矜应助科研通管家采纳,获得10
29秒前
29秒前
完美世界应助科研通管家采纳,获得10
30秒前
丘比特应助科研通管家采纳,获得10
30秒前
华仔应助科研通管家采纳,获得10
30秒前
wanci应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
个性的紫菜应助喵叽采纳,获得200
30秒前
FashionBoy应助科研通管家采纳,获得10
30秒前
英俊的铭应助科研通管家采纳,获得10
30秒前
30秒前
lareina完成签到 ,获得积分10
31秒前
32秒前
lcc发布了新的文献求助10
33秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140496
求助须知:如何正确求助?哪些是违规求助? 2791382
关于积分的说明 7798716
捐赠科研通 2447682
什么是DOI,文献DOI怎么找? 1302020
科研通“疑难数据库(出版商)”最低求助积分说明 626402
版权声明 601194