Automated surgical workflow identification by artificial intelligence in laparoscopic hepatectomy: Experimental research

工作流程 人工智能 鉴定(生物学) 医学 卷积神经网络 深度学习 机器学习 计算机科学 数据库 植物 生物
作者
Kimimasa Sasaki,Masaaki Ito,Shin Kobayashi,Daichi Kitaguchi,Hiroki Matsuzaki,Masashi Kudo,Hiro Hasegawa,Nobuyoshi Takeshita,Motokazu Sugimoto,Shuichi Mitsunaga,Naoto Gotohda
出处
期刊:International Journal of Surgery [Wolters Kluwer]
卷期号:105: 106856-106856 被引量:11
标识
DOI:10.1016/j.ijsu.2022.106856
摘要

To perform accurate laparoscopic hepatectomy (LH) without injury, novel intraoperative systems of computer-assisted surgery (CAS) for LH are expected. Automated surgical workflow identification is a key component for developing CAS systems. This study aimed to develop a deep-learning model for automated surgical step identification in LH.We constructed a dataset comprising 40 cases of pure LH videos; 30 and 10 cases were used for the training and testing datasets, respectively. Each video was divided into 30 frames per second as static images. LH was divided into nine surgical steps (Steps 0-8), and each frame was annotated as being within one of these steps in the training set. After extracorporeal actions (Step 0) were excluded from the video, two deep-learning models of automated surgical step identification for 8-step and 6-step models were developed using a convolutional neural network (Models 1 & 2). Each frame in the testing dataset was classified using the constructed model performed in real-time.Above 8 million frames were annotated for surgical step identification from the pure LH videos. The overall accuracy of Model 1 was 0.891, which was increased to 0.947 in Model 2. Median and average accuracy for each case in Model 2 was 0.927 (range, 0.884-0.997) and 0.937 ± 0.04 (standardized difference), respectively. Real-time automated surgical step identification was performed at 21 frames per second.We developed a highly accurate deep-learning model for surgical step identification in pure LH. Our model could be applied to intraoperative systems of CAS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aillyzm完成签到,获得积分10
4秒前
我爱学习完成签到 ,获得积分10
5秒前
曲线完成签到,获得积分10
5秒前
吃瓜不吐籽关注了科研通微信公众号
7秒前
9秒前
daidaimumu完成签到 ,获得积分10
11秒前
11秒前
小蘑菇应助尊敬寒松采纳,获得10
11秒前
13秒前
淡蓝色发布了新的文献求助10
13秒前
14秒前
大迪发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
18秒前
18秒前
未来星发布了新的文献求助10
21秒前
wang发布了新的文献求助10
21秒前
尊敬寒松发布了新的文献求助10
23秒前
积极问晴完成签到,获得积分10
23秒前
25秒前
lalala发布了新的文献求助10
29秒前
31秒前
bmt发布了新的文献求助10
32秒前
32秒前
32秒前
34秒前
34秒前
zxcv发布了新的文献求助10
36秒前
37秒前
哇咔咔发布了新的文献求助10
38秒前
Joanna关注了科研通微信公众号
39秒前
小二郎应助twob采纳,获得10
40秒前
43秒前
gangxiaxuan完成签到,获得积分10
43秒前
44秒前
44秒前
额ee发布了新的文献求助10
47秒前
Joanna发布了新的文献求助10
47秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993490
求助须知:如何正确求助?哪些是违规求助? 3534168
关于积分的说明 11264831
捐赠科研通 3274008
什么是DOI,文献DOI怎么找? 1806220
邀请新用户注册赠送积分活动 883055
科研通“疑难数据库(出版商)”最低求助积分说明 809662