Automated surgical workflow identification by artificial intelligence in laparoscopic hepatectomy: Experimental research

工作流程 人工智能 鉴定(生物学) 医学 卷积神经网络 深度学习 机器学习 计算机科学 数据库 植物 生物
作者
Kimimasa Sasaki,Masaaki Ito,Shin Kobayashi,Daichi Kitaguchi,Hiroki Matsuzaki,Masashi Kudo,Hiro Hasegawa,Nobuyoshi Takeshita,Motokazu Sugimoto,Shuichi Mitsunaga,Naoto Gotohda
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:105: 106856-106856 被引量:11
标识
DOI:10.1016/j.ijsu.2022.106856
摘要

To perform accurate laparoscopic hepatectomy (LH) without injury, novel intraoperative systems of computer-assisted surgery (CAS) for LH are expected. Automated surgical workflow identification is a key component for developing CAS systems. This study aimed to develop a deep-learning model for automated surgical step identification in LH.We constructed a dataset comprising 40 cases of pure LH videos; 30 and 10 cases were used for the training and testing datasets, respectively. Each video was divided into 30 frames per second as static images. LH was divided into nine surgical steps (Steps 0-8), and each frame was annotated as being within one of these steps in the training set. After extracorporeal actions (Step 0) were excluded from the video, two deep-learning models of automated surgical step identification for 8-step and 6-step models were developed using a convolutional neural network (Models 1 & 2). Each frame in the testing dataset was classified using the constructed model performed in real-time.Above 8 million frames were annotated for surgical step identification from the pure LH videos. The overall accuracy of Model 1 was 0.891, which was increased to 0.947 in Model 2. Median and average accuracy for each case in Model 2 was 0.927 (range, 0.884-0.997) and 0.937 ± 0.04 (standardized difference), respectively. Real-time automated surgical step identification was performed at 21 frames per second.We developed a highly accurate deep-learning model for surgical step identification in pure LH. Our model could be applied to intraoperative systems of CAS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
楠楠发布了新的文献求助10
1秒前
2秒前
炒米粉完成签到,获得积分10
4秒前
4秒前
5秒前
wzppp完成签到,获得积分10
5秒前
王治豪发布了新的文献求助10
6秒前
6秒前
张姐完成签到,获得积分10
6秒前
小安发布了新的文献求助10
6秒前
tsttst发布了新的文献求助10
7秒前
重要的扬完成签到,获得积分20
7秒前
hello发布了新的文献求助10
9秒前
烟花应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
yar应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
小刘哥儿完成签到,获得积分10
12秒前
完美世界应助王治豪采纳,获得10
12秒前
12秒前
蜂蜜罐头完成签到,获得积分10
13秒前
开朗的慕儿完成签到,获得积分10
13秒前
17秒前
wanci应助小安采纳,获得10
17秒前
17秒前
汉堡包应助白糖采纳,获得10
19秒前
应万言完成签到,获得积分0
19秒前
安详过客发布了新的文献求助10
20秒前
shweah2003完成签到,获得积分10
20秒前
香蕉觅云应助歪歪吸采纳,获得10
20秒前
楠楠完成签到,获得积分10
20秒前
Mars夜愿发布了新的文献求助10
24秒前
24秒前
重要的扬发布了新的文献求助30
25秒前
27秒前
cctv18应助cctv18采纳,获得10
27秒前
28秒前
jing发布了新的文献求助10
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3322268
求助须知:如何正确求助?哪些是违规求助? 2953558
关于积分的说明 8566044
捐赠科研通 2631115
什么是DOI,文献DOI怎么找? 1439660
科研通“疑难数据库(出版商)”最低求助积分说明 667171
邀请新用户注册赠送积分活动 653598