Automated surgical workflow identification by artificial intelligence in laparoscopic hepatectomy: Experimental research

工作流程 人工智能 鉴定(生物学) 医学 卷积神经网络 深度学习 机器学习 计算机科学 数据库 植物 生物
作者
Kimimasa Sasaki,Masaaki Ito,Shin Kobayashi,Daichi Kitaguchi,Hiroki Matsuzaki,Masashi Kudo,Hiro Hasegawa,Nobuyoshi Takeshita,Motokazu Sugimoto,Shuichi Mitsunaga,Naoto Gotohda
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:105: 106856-106856 被引量:11
标识
DOI:10.1016/j.ijsu.2022.106856
摘要

To perform accurate laparoscopic hepatectomy (LH) without injury, novel intraoperative systems of computer-assisted surgery (CAS) for LH are expected. Automated surgical workflow identification is a key component for developing CAS systems. This study aimed to develop a deep-learning model for automated surgical step identification in LH.We constructed a dataset comprising 40 cases of pure LH videos; 30 and 10 cases were used for the training and testing datasets, respectively. Each video was divided into 30 frames per second as static images. LH was divided into nine surgical steps (Steps 0-8), and each frame was annotated as being within one of these steps in the training set. After extracorporeal actions (Step 0) were excluded from the video, two deep-learning models of automated surgical step identification for 8-step and 6-step models were developed using a convolutional neural network (Models 1 & 2). Each frame in the testing dataset was classified using the constructed model performed in real-time.Above 8 million frames were annotated for surgical step identification from the pure LH videos. The overall accuracy of Model 1 was 0.891, which was increased to 0.947 in Model 2. Median and average accuracy for each case in Model 2 was 0.927 (range, 0.884-0.997) and 0.937 ± 0.04 (standardized difference), respectively. Real-time automated surgical step identification was performed at 21 frames per second.We developed a highly accurate deep-learning model for surgical step identification in pure LH. Our model could be applied to intraoperative systems of CAS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
欢喜烧鹅完成签到,获得积分10
2秒前
4秒前
4秒前
纯真的初阳完成签到,获得积分10
5秒前
8秒前
小小发布了新的文献求助10
10秒前
左手的左手是左手完成签到,获得积分10
11秒前
麻辣烫小姐完成签到,获得积分10
12秒前
12秒前
Sky完成签到,获得积分10
13秒前
WittingGU完成签到,获得积分0
13秒前
15秒前
15秒前
香蕉觅云应助小巧秋柔采纳,获得10
15秒前
啊嘞嘞完成签到,获得积分10
16秒前
16秒前
慕青应助小刘采纳,获得10
17秒前
18秒前
菠萝完成签到 ,获得积分0
19秒前
20秒前
无为发布了新的文献求助10
21秒前
阳先生发布了新的文献求助10
21秒前
22秒前
小巧秋柔完成签到,获得积分20
23秒前
甜蜜的阿飞完成签到,获得积分10
24秒前
levitt233完成签到 ,获得积分10
25秒前
26秒前
田様应助柠栀采纳,获得10
26秒前
CallMeIris发布了新的文献求助10
27秒前
menghongmei发布了新的文献求助10
28秒前
呱牛完成签到 ,获得积分10
28秒前
深夜诗人发布了新的文献求助10
29秒前
29秒前
30秒前
李健应助Kannan采纳,获得10
30秒前
31秒前
31秒前
完美世界应助喜气洋洋采纳,获得10
32秒前
坦率灵槐发布了新的文献求助30
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5309724
求助须知:如何正确求助?哪些是违规求助? 4454247
关于积分的说明 13859535
捐赠科研通 4342205
什么是DOI,文献DOI怎么找? 2384385
邀请新用户注册赠送积分活动 1378844
关于科研通互助平台的介绍 1347021