材料科学
X射线光电子能谱
溶解
锂(药物)
化学工程
电解质
原子层沉积
离子
离子电导率
离子键合
金属
密度泛函理论
电导率
图层(电子)
分析化学(期刊)
纳米技术
物理化学
电极
有机化学
计算化学
化学
冶金
内分泌学
工程类
医学
作者
Jin Li,Haitao Zhang,Yingyue Cui,Haoran Da,Yingjun Cai,Suojiang Zhang
出处
期刊:Nano Energy
[Elsevier BV]
日期:2022-08-18
卷期号:102: 107716-107716
被引量:25
标识
DOI:10.1016/j.nanoen.2022.107716
摘要
The stability of the interfacial layers depends mainly on the composition and distribution of the decomposition products from solid-state electrolytes (SSEs) in lithium metal batteries. Therefore, the design of SSEs becomes an attractive way to construct a homogeneous stable interfacial layer. Herein, pentafluorostyrene (PFS) as a block is used to generate robust interfacial layers for solid-state batteries. Meanwhile, PFS facilitates the dissociation of lithium salts to produce more free Li-ions which can enhance the ionic conductivity from the results of 7Li solid-state NMR spectra, density functional theory, and molecular dynamics calculations. Subsequently, XPS depth etching and TOF-SIMS characterizations together show that the gradient interfacial layer is composed of a rich C-F bond surface layer and a rich–LiF&Li3N bottom layer, enabling rapid transport and uniform deposition of lithium ions. As a result, the Li/Li symmetric cell can achieve a stable ultra-long cycle time of more than 3000 h at 0.2 mA cm−2 and a critical current density of 2.4 mA cm−2. The as-prepared SSE exhibits a high ionic conductivity of 4.3 × 10−4 S cm−1 at 25 °C and remarkable cycling stability at 0 °C and − 20 °C. Moreover, the lithium metal batteries based on as-prepared SSEs deliver high-rate (2 C) capability and high-voltage (NCM811) stability at room temperatures.
科研通智能强力驱动
Strongly Powered by AbleSci AI