催化作用
纳米片
石墨氮化碳
热解
氮化碳
反应速率常数
活化能
化学
碳纤维
密度泛函理论
降级(电信)
氮化物
解吸
材料科学
化学工程
光化学
物理化学
纳米技术
光催化
动力学
吸附
计算化学
有机化学
复合材料
工程类
复合数
量子力学
图层(电子)
物理
计算机科学
电信
作者
Changqing Zhu,Yu Nie,Fenxian Cun,Yuan Wang,Ziqi Tian,Fuqiang Liu
标识
DOI:10.1016/j.apcatb.2022.121900
摘要
Low temperatures approaching 0 °C will slash the efficiency of Fenton-like catalysis for organic pollution control. Herein, a two-step pyrolysis strategy is developed to fabricate the carbon nitride nanosheet-supported single-atom Fe catalyst with ultrahigh Fe loading amount of 16.64 wt%. The secondary pyrolysis generates surface vacancies to convert Fe coordination structure from FeN3 to FeN5, which exhibits ultralow activation energy of 6.54 kJ mol−1 in peroxymonosulfate activation for sulfamethoxazole degradation via a new ‘surface contact oxidation’ path. The catalyst-dose-normalized kinetic rate constant on FeN5 site reaches 21.38 L min−1 g−1 at 2 °C, even exceeding that on FeN3 site and reported values by 0.61–70.27 time(s) at 25–30 °C. Density-functional-theory calculations reveal that additional N ligands (L) make less charges transfer from Fe toward -SO4 in critical [FeL-SO4] intermediates, enabling their thermodynamically favorable electron seizure from pollutants, and cause easier -SO4H desorption for rapid site regeneration, contributing to excellent low-temperature resistance.
科研通智能强力驱动
Strongly Powered by AbleSci AI