Emotion is perceived accurately from isolated body parts, especially hands

心理学 情感知觉 感知 认知心理学 肢体语言 体型 面部表情 情绪识别 相似性(几何) 沟通 人工智能 计算机科学 图像(数学) 神经科学
作者
Ellen Blythe,Lúcia Garrido,Matthew R. Longo
出处
期刊:Cognition [Elsevier]
卷期号:230: 105260-105260 被引量:23
标识
DOI:10.1016/j.cognition.2022.105260
摘要

Body posture and configuration provide important visual cues about the emotion states of other people. We know that bodily form is processed holistically, however, emotion recognition may depend on different mechanisms; certain body parts, such as the hands, may be especially important for perceiving emotion. This study therefore compared participants' emotion recognition performance when shown images of full bodies, or of isolated hands, arms, heads and torsos. Across three experiments, emotion recognition accuracy was above chance for all body parts. While emotions were recognized most accurately from full bodies, recognition performance from the hands was more accurate than for other body parts. Representational similarity analysis further showed that the pattern of errors for the hands was related to that for full bodies. Performance was reduced when stimuli were inverted, showing a clear body inversion effect. The high performance for hands was not due only to the fact that there are two hands, as performance remained well above chance even when just one hand was shown. These results demonstrate that emotions can be decoded from body parts. Furthermore, certain features, such as the hands, are more important to emotion perception than others. Successful social interaction relies on accurately perceiving emotional information from others. Bodies provide an abundance of emotion cues; however, the way in which emotional bodies and body parts are perceived is unclear. We investigated this perceptual process by comparing emotion recognition for body parts with that for full bodies. Crucially, we found that while emotions were most accurately recognized from full bodies, emotions were also classified accurately when images of isolated hands, arms, heads and torsos were seen. Of the body parts shown, emotion recognition from the hands was most accurate. Furthermore, shared patterns of emotion classification for hands and full bodies suggested that emotion recognition mechanisms are shared for full bodies and body parts. That the hands are key to emotion perception is important evidence in its own right. It could also be applied to interventions for individuals who find it difficult to read emotions from faces and bodies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寂灭之时完成签到,获得积分10
1秒前
不朽丶哀默完成签到,获得积分10
1秒前
2秒前
梵梵完成签到 ,获得积分10
3秒前
hatim完成签到,获得积分10
5秒前
小萝卜123发布了新的文献求助10
7秒前
会飞的小甘蔗完成签到 ,获得积分10
12秒前
研究生完成签到 ,获得积分10
18秒前
浮游应助xh采纳,获得10
19秒前
中原第一深情完成签到,获得积分10
20秒前
20秒前
22秒前
海洋球完成签到 ,获得积分10
24秒前
呆萌安萱完成签到,获得积分10
25秒前
她的城完成签到,获得积分0
26秒前
27秒前
研友_ZG4ml8完成签到 ,获得积分10
27秒前
zrrr完成签到 ,获得积分10
28秒前
呆萌安萱发布了新的文献求助10
29秒前
我是老大应助小Y采纳,获得10
31秒前
Youth完成签到 ,获得积分20
34秒前
FCL完成签到,获得积分10
37秒前
小蘑菇应助飞丹采纳,获得10
39秒前
39秒前
科研通AI2S应助YOLO采纳,获得10
40秒前
十月天秤完成签到,获得积分10
44秒前
浮游应助小萝卜123采纳,获得10
45秒前
overThat完成签到,获得积分10
48秒前
49秒前
50秒前
Akim应助史念薇采纳,获得10
51秒前
来了来了完成签到 ,获得积分10
53秒前
红毛兔完成签到 ,获得积分10
53秒前
岁月如歌完成签到 ,获得积分0
54秒前
wao完成签到 ,获得积分10
54秒前
55秒前
飞丹发布了新的文献求助10
56秒前
寒冷的月亮完成签到,获得积分10
58秒前
研友_ndvWy8完成签到,获得积分10
1分钟前
wxxz完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5315270
求助须知:如何正确求助?哪些是违规求助? 4457945
关于积分的说明 13868470
捐赠科研通 4347468
什么是DOI,文献DOI怎么找? 2387790
邀请新用户注册赠送积分活动 1381932
关于科研通互助平台的介绍 1351243