已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Molecular Mechanism of YuPingFeng in the Treatment of Asthma Based on Network Pharmacology and Molecular Docking Technology

对接(动物) 机制(生物学) 药理学 计算生物学 哮喘 化学 医学 生物 免疫学 护理部 哲学 认识论
作者
Li Shen,Jinmiao Lu,Guangfei Wang,Cheng Wang,Zhiping Li
出处
期刊:Computational and Mathematical Methods in Medicine [Hindawi Publishing Corporation]
卷期号:2022: 1-17 被引量:5
标识
DOI:10.1155/2022/7364126
摘要

Objective. To explore the molecular targets and mechanism of YuPingFeng (YPF) for the treatment of asthma by using network pharmacology and molecular docking. Methods. The potential active ingredients and relevant targets of YPF were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Asthma-related gene targets were retrieved from GeneCards, OMIM, DrugBank, PharmGKB, and TTD databases. The protein-protein (PPI) network between YPF and asthma common targets was constructed by SRING online database and Cytoscape software. GO and KEGG analyses were performed to explore the complicated molecular biological processes and potential pathways. Finally, a molecular docking approach was carried out to verify the results. Results. We obtained 100 potential targets of the 35 active ingredients in YPF and 1610 asthma-related targets. 60 YPF-asthma common targets were selected to perform PPI analysis. Seven core genes were screened based on two topological calculation methods. GO and KEGG results showed that the main pathways of YPF in treating asthma include TNF signaling pathway and PI3K-Akt signaling pathway. Finally, the molecular docking results indicated that the key ingredients of YPF had a good affinity with the relevant core genes. Conclusion. This study reflects the multicomponent, multitarget, and multipathway characteristics of YPF in treating asthma, providing a theoretical and scientific basis for the intervention of asthma by traditional Chinese medicine YPF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
所所应助梁婷采纳,获得10
3秒前
3秒前
传奇3应助伶俐柔采纳,获得10
5秒前
盼波刘完成签到,获得积分10
7秒前
橙汁发布了新的文献求助10
8秒前
myk完成签到,获得积分10
9秒前
qqq发布了新的文献求助10
9秒前
Owen应助十分十分佳采纳,获得10
10秒前
10秒前
11秒前
11秒前
崔裕敬发布了新的文献求助10
11秒前
NexusExplorer应助123...采纳,获得10
12秒前
霍元正发布了新的文献求助10
15秒前
小米粥发布了新的文献求助10
16秒前
橙汁完成签到,获得积分10
19秒前
19秒前
浮游应助hero采纳,获得20
21秒前
Akim应助小米粥采纳,获得10
22秒前
丘比特应助张瑞宁采纳,获得10
23秒前
All发布了新的文献求助10
23秒前
酸菜鱼完成签到 ,获得积分10
23秒前
CodeCraft应助动人的科研采纳,获得10
24秒前
充电宝应助xiw采纳,获得10
24秒前
Berthe完成签到 ,获得积分10
26秒前
Tewd完成签到,获得积分20
26秒前
蛀牙联盟发布了新的文献求助10
28秒前
29秒前
崔裕敬完成签到,获得积分10
30秒前
30秒前
31秒前
32秒前
科研通AI6应助霍元正采纳,获得10
35秒前
张瑞宁发布了新的文献求助10
36秒前
37秒前
Liekkas完成签到,获得积分10
37秒前
卷卷发布了新的文献求助10
37秒前
bbbbbb完成签到,获得积分10
37秒前
张瑞宁完成签到,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4899245
求助须知:如何正确求助?哪些是违规求助? 4179637
关于积分的说明 12975373
捐赠科研通 3943651
什么是DOI,文献DOI怎么找? 2163478
邀请新用户注册赠送积分活动 1181737
关于科研通互助平台的介绍 1087447