Molecular Mechanism of YuPingFeng in the Treatment of Asthma Based on Network Pharmacology and Molecular Docking Technology

对接(动物) 机制(生物学) 药理学 计算生物学 哮喘 化学 医学 生物 免疫学 认识论 哲学 护理部
作者
Li Shen,Jinmiao Lu,Guangfei Wang,Cheng Wang,Zhiping Li
出处
期刊:Computational and Mathematical Methods in Medicine [Hindawi Limited]
卷期号:2022: 1-17 被引量:5
标识
DOI:10.1155/2022/7364126
摘要

Objective. To explore the molecular targets and mechanism of YuPingFeng (YPF) for the treatment of asthma by using network pharmacology and molecular docking. Methods. The potential active ingredients and relevant targets of YPF were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Asthma-related gene targets were retrieved from GeneCards, OMIM, DrugBank, PharmGKB, and TTD databases. The protein-protein (PPI) network between YPF and asthma common targets was constructed by SRING online database and Cytoscape software. GO and KEGG analyses were performed to explore the complicated molecular biological processes and potential pathways. Finally, a molecular docking approach was carried out to verify the results. Results. We obtained 100 potential targets of the 35 active ingredients in YPF and 1610 asthma-related targets. 60 YPF-asthma common targets were selected to perform PPI analysis. Seven core genes were screened based on two topological calculation methods. GO and KEGG results showed that the main pathways of YPF in treating asthma include TNF signaling pathway and PI3K-Akt signaling pathway. Finally, the molecular docking results indicated that the key ingredients of YPF had a good affinity with the relevant core genes. Conclusion. This study reflects the multicomponent, multitarget, and multipathway characteristics of YPF in treating asthma, providing a theoretical and scientific basis for the intervention of asthma by traditional Chinese medicine YPF.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星毅完成签到,获得积分10
刚刚
ccc完成签到,获得积分10
1秒前
做的出来完成签到,获得积分10
1秒前
Susanx完成签到,获得积分10
1秒前
1秒前
看不见的蛋炒饭完成签到 ,获得积分10
1秒前
1秒前
沉默的莞完成签到,获得积分10
1秒前
纯真的夏兰完成签到,获得积分10
1秒前
塘仔完成签到,获得积分10
2秒前
橘子味完成签到 ,获得积分10
2秒前
2秒前
王哇噻完成签到 ,获得积分10
4秒前
正经大善人完成签到,获得积分10
4秒前
hyq008完成签到,获得积分10
5秒前
Dreamer完成签到,获得积分10
5秒前
5秒前
meizi0109完成签到 ,获得积分10
6秒前
ivvi完成签到,获得积分10
6秒前
614606480@qq.com完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
浮游应助康轲采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
万能图书馆应助Zo采纳,获得30
9秒前
糖炒小白云完成签到,获得积分10
9秒前
郝天鑫完成签到,获得积分10
9秒前
加减乘除发布了新的文献求助10
9秒前
风中的溪流完成签到,获得积分10
10秒前
李春生完成签到,获得积分10
10秒前
加油少年完成签到,获得积分10
11秒前
11秒前
美少叔叔完成签到 ,获得积分10
11秒前
12秒前
yw完成签到 ,获得积分10
12秒前
12秒前
jzs完成签到 ,获得积分10
12秒前
cxy完成签到,获得积分10
14秒前
cc完成签到,获得积分10
14秒前
巴达天使完成签到,获得积分10
15秒前
潇洒台灯完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671659
求助须知:如何正确求助?哪些是违规求助? 4921045
关于积分的说明 15135488
捐赠科研通 4830525
什么是DOI,文献DOI怎么找? 2587125
邀请新用户注册赠送积分活动 1540733
关于科研通互助平台的介绍 1499131