Molecular Mechanism of YuPingFeng in the Treatment of Asthma Based on Network Pharmacology and Molecular Docking Technology

对接(动物) 机制(生物学) 药理学 计算生物学 哮喘 化学 医学 生物 免疫学 认识论 哲学 护理部
作者
Li Shen,Jinmiao Lu,Guangfei Wang,Cheng Wang,Zhiping Li
出处
期刊:Computational and Mathematical Methods in Medicine [Hindawi Limited]
卷期号:2022: 1-17 被引量:5
标识
DOI:10.1155/2022/7364126
摘要

Objective. To explore the molecular targets and mechanism of YuPingFeng (YPF) for the treatment of asthma by using network pharmacology and molecular docking. Methods. The potential active ingredients and relevant targets of YPF were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Asthma-related gene targets were retrieved from GeneCards, OMIM, DrugBank, PharmGKB, and TTD databases. The protein-protein (PPI) network between YPF and asthma common targets was constructed by SRING online database and Cytoscape software. GO and KEGG analyses were performed to explore the complicated molecular biological processes and potential pathways. Finally, a molecular docking approach was carried out to verify the results. Results. We obtained 100 potential targets of the 35 active ingredients in YPF and 1610 asthma-related targets. 60 YPF-asthma common targets were selected to perform PPI analysis. Seven core genes were screened based on two topological calculation methods. GO and KEGG results showed that the main pathways of YPF in treating asthma include TNF signaling pathway and PI3K-Akt signaling pathway. Finally, the molecular docking results indicated that the key ingredients of YPF had a good affinity with the relevant core genes. Conclusion. This study reflects the multicomponent, multitarget, and multipathway characteristics of YPF in treating asthma, providing a theoretical and scientific basis for the intervention of asthma by traditional Chinese medicine YPF.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Rue完成签到,获得积分10
2秒前
2秒前
学术乞丐发布了新的文献求助20
2秒前
那西西完成签到,获得积分10
3秒前
芋泥面包发布了新的文献求助10
4秒前
ZB完成签到,获得积分10
4秒前
xx发布了新的文献求助10
4秒前
4秒前
深情安青应助郭耀锐采纳,获得10
5秒前
坦率的谷雪完成签到,获得积分10
5秒前
茗牌棉花发布了新的文献求助10
6秒前
Jako完成签到 ,获得积分10
6秒前
勤恳寒安发布了新的文献求助10
6秒前
bkagyin应助cnyyp采纳,获得10
7秒前
勤恳的宛菡完成签到,获得积分10
7秒前
8秒前
9秒前
kk完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
Sera完成签到,获得积分10
13秒前
Denmark发布了新的文献求助10
14秒前
14秒前
gxt完成签到,获得积分10
14秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
郭耀锐发布了新的文献求助10
17秒前
小王小王完成签到,获得积分10
17秒前
彭于晏应助vv采纳,获得10
18秒前
19秒前
19秒前
Hello应助感性的天蓉采纳,获得10
20秒前
20秒前
学术乞丐完成签到,获得积分10
21秒前
22秒前
那西西发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641911
求助须知:如何正确求助?哪些是违规求助? 4757635
关于积分的说明 15015486
捐赠科研通 4800390
什么是DOI,文献DOI怎么找? 2566016
邀请新用户注册赠送积分活动 1524164
关于科研通互助平台的介绍 1483790