Molecular Mechanism of YuPingFeng in the Treatment of Asthma Based on Network Pharmacology and Molecular Docking Technology

对接(动物) 机制(生物学) 药理学 计算生物学 哮喘 化学 医学 生物 免疫学 认识论 哲学 护理部
作者
Li Shen,Jinmiao Lu,Guangfei Wang,Cheng Wang,Zhiping Li
出处
期刊:Computational and Mathematical Methods in Medicine [Hindawi Limited]
卷期号:2022: 1-17 被引量:5
标识
DOI:10.1155/2022/7364126
摘要

Objective. To explore the molecular targets and mechanism of YuPingFeng (YPF) for the treatment of asthma by using network pharmacology and molecular docking. Methods. The potential active ingredients and relevant targets of YPF were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Asthma-related gene targets were retrieved from GeneCards, OMIM, DrugBank, PharmGKB, and TTD databases. The protein-protein (PPI) network between YPF and asthma common targets was constructed by SRING online database and Cytoscape software. GO and KEGG analyses were performed to explore the complicated molecular biological processes and potential pathways. Finally, a molecular docking approach was carried out to verify the results. Results. We obtained 100 potential targets of the 35 active ingredients in YPF and 1610 asthma-related targets. 60 YPF-asthma common targets were selected to perform PPI analysis. Seven core genes were screened based on two topological calculation methods. GO and KEGG results showed that the main pathways of YPF in treating asthma include TNF signaling pathway and PI3K-Akt signaling pathway. Finally, the molecular docking results indicated that the key ingredients of YPF had a good affinity with the relevant core genes. Conclusion. This study reflects the multicomponent, multitarget, and multipathway characteristics of YPF in treating asthma, providing a theoretical and scientific basis for the intervention of asthma by traditional Chinese medicine YPF.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刘星星完成签到 ,获得积分10
刚刚
阳光书芹完成签到,获得积分10
1秒前
cai完成签到,获得积分10
1秒前
lunwenqigai完成签到,获得积分10
5秒前
solong1213发布了新的文献求助10
5秒前
星辰大海应助路边采纳,获得10
5秒前
Akim应助Tethys采纳,获得10
6秒前
隐形曼青应助元正采纳,获得10
6秒前
keyanniniz完成签到,获得积分10
8秒前
8秒前
卡皮巴拉完成签到,获得积分10
8秒前
CipherSage应助shinn采纳,获得10
9秒前
11秒前
自信的灵薇完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
小巧初露完成签到 ,获得积分10
13秒前
13秒前
feitian201861发布了新的文献求助10
13秒前
14秒前
畅快的南珍完成签到 ,获得积分10
14秒前
1997发布了新的文献求助30
14秒前
14秒前
14秒前
mushanes完成签到 ,获得积分10
14秒前
鲤鱼从安发布了新的文献求助10
15秒前
AOTUMAN完成签到,获得积分10
16秒前
16秒前
手打鱼丸发布了新的文献求助10
16秒前
星辰大海应助scugy采纳,获得10
17秒前
yk应助科研通管家采纳,获得10
18秒前
彭于晏应助科研通管家采纳,获得10
18秒前
852应助科研通管家采纳,获得10
18秒前
lxy94614应助科研通管家采纳,获得10
18秒前
彭于晏应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
morena应助科研通管家采纳,获得20
18秒前
香蕉觅云应助科研通管家采纳,获得10
18秒前
chen发布了新的文献求助10
19秒前
大模型应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663721
求助须知:如何正确求助?哪些是违规求助? 4852264
关于积分的说明 15105525
捐赠科研通 4822005
什么是DOI,文献DOI怎么找? 2581120
邀请新用户注册赠送积分活动 1535274
关于科研通互助平台的介绍 1493652