亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Molecular Mechanism of YuPingFeng in the Treatment of Asthma Based on Network Pharmacology and Molecular Docking Technology

对接(动物) 机制(生物学) 药理学 计算生物学 哮喘 化学 医学 生物 免疫学 认识论 哲学 护理部
作者
Li Shen,Jinmiao Lu,Guangfei Wang,Cheng Wang,Zhiping Li
出处
期刊:Computational and Mathematical Methods in Medicine [Hindawi Limited]
卷期号:2022: 1-17 被引量:5
标识
DOI:10.1155/2022/7364126
摘要

Objective. To explore the molecular targets and mechanism of YuPingFeng (YPF) for the treatment of asthma by using network pharmacology and molecular docking. Methods. The potential active ingredients and relevant targets of YPF were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Asthma-related gene targets were retrieved from GeneCards, OMIM, DrugBank, PharmGKB, and TTD databases. The protein-protein (PPI) network between YPF and asthma common targets was constructed by SRING online database and Cytoscape software. GO and KEGG analyses were performed to explore the complicated molecular biological processes and potential pathways. Finally, a molecular docking approach was carried out to verify the results. Results. We obtained 100 potential targets of the 35 active ingredients in YPF and 1610 asthma-related targets. 60 YPF-asthma common targets were selected to perform PPI analysis. Seven core genes were screened based on two topological calculation methods. GO and KEGG results showed that the main pathways of YPF in treating asthma include TNF signaling pathway and PI3K-Akt signaling pathway. Finally, the molecular docking results indicated that the key ingredients of YPF had a good affinity with the relevant core genes. Conclusion. This study reflects the multicomponent, multitarget, and multipathway characteristics of YPF in treating asthma, providing a theoretical and scientific basis for the intervention of asthma by traditional Chinese medicine YPF.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
17秒前
tiantian完成签到 ,获得积分10
19秒前
顾矜应助zzb采纳,获得10
20秒前
24秒前
zzb完成签到,获得积分10
28秒前
30秒前
zzb发布了新的文献求助10
30秒前
38秒前
40秒前
默己完成签到 ,获得积分10
44秒前
小张真的困啦完成签到,获得积分10
51秒前
null应助小张真的困啦采纳,获得10
55秒前
55秒前
1分钟前
1分钟前
皮皮发布了新的文献求助10
1分钟前
小二郎应助顾绯采纳,获得10
1分钟前
1分钟前
1分钟前
Ava应助皮皮采纳,获得10
1分钟前
1分钟前
1分钟前
Tingshuo发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Tingshuo完成签到,获得积分10
1分钟前
皮皮完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
顾绯发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Ariel完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
合适的如天完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
所所应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617095
求助须知:如何正确求助?哪些是违规求助? 4701461
关于积分的说明 14913668
捐赠科研通 4748953
什么是DOI,文献DOI怎么找? 2549283
邀请新用户注册赠送积分活动 1512335
关于科研通互助平台的介绍 1474091