Using EEM-PARAFAC to identify and trace the pollution sources of surface water with receptor models in Taihu Lake Basin, China

污染 环境科学 水质 地表水 主成分分析 污水 水文学(农业) 污染物 水污染 环境工程 环境化学 数学 统计 化学 生态学 工程类 岩土工程 有机化学 生物
作者
Xu Wang,Meng Zhang,Lili Liu,Zhiping Wang,Kuangfei Lin
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:321: 115925-115925 被引量:25
标识
DOI:10.1016/j.jenvman.2022.115925
摘要

The identification and apportionment of the multiple pollution sources are essential and crucial for improving the effectiveness of surface water resources management. In this study, the surface water samples were collected from Taihu Lake Basin, and the optimal water quality parameters for the receptor models were selected firstly with multivariate statistical analyses. In order to identify the potential pollution sources in surface water, dissolved organic matter (DOM) was analyzed with the excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC). Through the Pearson correlation analysis of water quality parameters and DOM components, the pollution sources were further verified, i.e., agricultural activities, domestic sewage, phytoplankton growth/terrestrial input and industrial sources. In addition, principal component analysis (PCA) combined with the absolute principal component score-multiple linear regression (APCS-MLR) and positive matrix factorization (PMF) models were employed to quantify pollution sources. Compared with PCA-APCS-MLR model, PMF model resulted in higher performance on evaluation statistics and lower proportion of unexplained variability, thus showed more realistic and robust representation. The results of PMF showed that agricultural activities (42.08%) and domestic sewage (21.16%) were identified as the dominant pollution sources of surface water in the study area. This study highlights the effectiveness of EEM-PARAFAC in identifying the pollution sources, and the applicability of PMF in apportioning the contributions of each potential pollution source in surface water.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助洋洋采纳,获得10
刚刚
LYHHHH涵发布了新的文献求助10
4秒前
CodeCraft应助嗯哼采纳,获得10
5秒前
李健的小迷弟应助浩多多采纳,获得10
7秒前
负责的归尘完成签到,获得积分10
7秒前
YLJGJZ完成签到,获得积分10
8秒前
Rita发布了新的文献求助10
8秒前
10秒前
wanci应助直走不回头采纳,获得20
11秒前
ShowMaker应助GEOPYJ采纳,获得10
13秒前
草木方子发布了新的文献求助10
14秒前
15秒前
16秒前
Jsc给Jsc的求助进行了留言
18秒前
19秒前
19秒前
21秒前
斯文败类应助Mumu采纳,获得30
21秒前
yibo发布了新的文献求助10
22秒前
zs1234完成签到,获得积分10
23秒前
bboyyujie完成签到,获得积分10
25秒前
lvzhigang发布了新的文献求助10
25秒前
26秒前
26秒前
LCQ完成签到,获得积分20
27秒前
27秒前
28秒前
Orange应助兜兜采纳,获得10
29秒前
30秒前
30秒前
31秒前
ray发布了新的文献求助10
32秒前
快乐应助123采纳,获得10
32秒前
LCQ发布了新的文献求助10
32秒前
大白发布了新的文献求助10
33秒前
DAN_完成签到,获得积分10
33秒前
34秒前
34秒前
35秒前
LHL发布了新的文献求助10
35秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157519
求助须知:如何正确求助?哪些是违规求助? 2808900
关于积分的说明 7879102
捐赠科研通 2467351
什么是DOI,文献DOI怎么找? 1313394
科研通“疑难数据库(出版商)”最低求助积分说明 630395
版权声明 601919