Using EEM-PARAFAC to identify and trace the pollution sources of surface water with receptor models in Taihu Lake Basin, China

污染 环境科学 水质 地表水 主成分分析 污水 水文学(农业) 污染物 水污染 线性回归 环境工程 环境化学 数学 统计 化学 生态学 工程类 岩土工程 有机化学 生物
作者
Xu Wang,Meng Zhang,Lili Liu,Zhiping Wang,Kuangfei Lin
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:321: 115925-115925 被引量:40
标识
DOI:10.1016/j.jenvman.2022.115925
摘要

The identification and apportionment of the multiple pollution sources are essential and crucial for improving the effectiveness of surface water resources management. In this study, the surface water samples were collected from Taihu Lake Basin, and the optimal water quality parameters for the receptor models were selected firstly with multivariate statistical analyses. In order to identify the potential pollution sources in surface water, dissolved organic matter (DOM) was analyzed with the excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC). Through the Pearson correlation analysis of water quality parameters and DOM components, the pollution sources were further verified, i.e., agricultural activities, domestic sewage, phytoplankton growth/terrestrial input and industrial sources. In addition, principal component analysis (PCA) combined with the absolute principal component score-multiple linear regression (APCS-MLR) and positive matrix factorization (PMF) models were employed to quantify pollution sources. Compared with PCA-APCS-MLR model, PMF model resulted in higher performance on evaluation statistics and lower proportion of unexplained variability, thus showed more realistic and robust representation. The results of PMF showed that agricultural activities (42.08%) and domestic sewage (21.16%) were identified as the dominant pollution sources of surface water in the study area. This study highlights the effectiveness of EEM-PARAFAC in identifying the pollution sources, and the applicability of PMF in apportioning the contributions of each potential pollution source in surface water.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
FashionBoy应助快乐马采纳,获得10
2秒前
88C真是太神奇啦完成签到,获得积分10
2秒前
潇洒的平松完成签到,获得积分10
3秒前
隐形曼青应助Songsong采纳,获得10
4秒前
5秒前
Orange应助DrYang采纳,获得10
5秒前
6秒前
000发布了新的文献求助10
6秒前
Clover完成签到 ,获得积分10
7秒前
小妮子发布了新的文献求助10
10秒前
还单身的惜文完成签到 ,获得积分10
10秒前
Xiaoxiao举报rh1006求助涉嫌违规
10秒前
Neo完成签到,获得积分10
11秒前
14秒前
二三发布了新的文献求助10
15秒前
Cindy完成签到,获得积分10
15秒前
稳重翠完成签到 ,获得积分10
16秒前
psycho完成签到,获得积分10
17秒前
666发布了新的文献求助10
18秒前
一直完成签到,获得积分20
20秒前
我是老大应助科研通管家采纳,获得10
21秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
茶送白粥应助科研通管家采纳,获得10
21秒前
茶送白粥应助科研通管家采纳,获得10
22秒前
茶送白粥应助科研通管家采纳,获得10
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
桐桐应助科研通管家采纳,获得10
22秒前
22秒前
ED应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
23秒前
Hz发布了新的文献求助10
24秒前
学术小天才完成签到,获得积分10
26秒前
26秒前
明天见发布了新的文献求助10
27秒前
科目三应助666采纳,获得10
28秒前
在水一方应助勤劳糜采纳,获得10
28秒前
糯米糍发布了新的文献求助20
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966223
求助须知:如何正确求助?哪些是违规求助? 3511662
关于积分的说明 11159065
捐赠科研通 3246265
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874331
科研通“疑难数据库(出版商)”最低求助积分说明 804343