Using EEM-PARAFAC to identify and trace the pollution sources of surface water with receptor models in Taihu Lake Basin, China

污染 环境科学 水质 地表水 主成分分析 污水 水文学(农业) 污染物 水污染 线性回归 环境工程 环境化学 数学 统计 化学 生态学 工程类 岩土工程 有机化学 生物
作者
Xu Wang,Meng Zhang,Lili Liu,Zhiping Wang,Kuangfei Lin
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:321: 115925-115925 被引量:40
标识
DOI:10.1016/j.jenvman.2022.115925
摘要

The identification and apportionment of the multiple pollution sources are essential and crucial for improving the effectiveness of surface water resources management. In this study, the surface water samples were collected from Taihu Lake Basin, and the optimal water quality parameters for the receptor models were selected firstly with multivariate statistical analyses. In order to identify the potential pollution sources in surface water, dissolved organic matter (DOM) was analyzed with the excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC). Through the Pearson correlation analysis of water quality parameters and DOM components, the pollution sources were further verified, i.e., agricultural activities, domestic sewage, phytoplankton growth/terrestrial input and industrial sources. In addition, principal component analysis (PCA) combined with the absolute principal component score-multiple linear regression (APCS-MLR) and positive matrix factorization (PMF) models were employed to quantify pollution sources. Compared with PCA-APCS-MLR model, PMF model resulted in higher performance on evaluation statistics and lower proportion of unexplained variability, thus showed more realistic and robust representation. The results of PMF showed that agricultural activities (42.08%) and domestic sewage (21.16%) were identified as the dominant pollution sources of surface water in the study area. This study highlights the effectiveness of EEM-PARAFAC in identifying the pollution sources, and the applicability of PMF in apportioning the contributions of each potential pollution source in surface water.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李珅玥发布了新的文献求助30
1秒前
1秒前
1秒前
2秒前
2秒前
科研通AI6应助辛勤的映波采纳,获得10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
执着秋白发布了新的文献求助10
5秒前
wanzhao发布了新的文献求助30
8秒前
哈哈哈发布了新的文献求助10
8秒前
9秒前
10秒前
11秒前
11秒前
14秒前
14秒前
16秒前
清晨牛完成签到,获得积分10
18秒前
科研通AI6应助比奇堡力工采纳,获得10
19秒前
19秒前
落后的嚓茶完成签到,获得积分20
19秒前
哈哈哈完成签到,获得积分20
20秒前
pose关注了科研通微信公众号
21秒前
汪蔓蔓完成签到 ,获得积分10
21秒前
哈罗发布了新的文献求助10
21秒前
jiaheyuan发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
22秒前
隐形曼青应助yyx164采纳,获得10
22秒前
Revision完成签到,获得积分10
22秒前
科研通AI6应助李珅玥采纳,获得30
22秒前
23秒前
23秒前
gfjh完成签到,获得积分10
24秒前
25秒前
舒适傲白发布了新的文献求助10
25秒前
水泥酱发布了新的文献求助100
25秒前
浮游应助陶醉采纳,获得10
26秒前
薄荷味完成签到,获得积分10
26秒前
L1q完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675201
求助须知:如何正确求助?哪些是违规求助? 4943911
关于积分的说明 15151850
捐赠科研通 4834390
什么是DOI,文献DOI怎么找? 2589443
邀请新用户注册赠送积分活动 1543079
关于科研通互助平台的介绍 1501039