自噬
足细胞
活力测定
免疫印迹
污渍
肾
生物
化学
分子生物学
细胞生物学
细胞
内分泌学
细胞凋亡
生物化学
基因
蛋白尿
作者
Jinping Wang,Jiping Yan,Rui-Ling Xiao,Rong-Shan Li
摘要
Leucine-rich repeat kinase 2 (LRRK2) is a known regulator of autophagy in a range of cell types. Here, we investigated the role of LRRK2-associated autophagy during acute kidney injury (AKI) and its underlying mechanism(s) of action. Male mice aged 8-weeks were treated with the LRRK2 inhibitor MLi-2 and exposed to lipopolysaccharide (LPS) through intraperitoneal injection or ischemia-reperfusion (IR) surgery. Mice were sacrificed 12 or 24 h post-LPS injection or IR operation and blood was collected for serum creatinine measurements. Kidney cortical tissues were collected for western blot analysis of podocyte-specific markers and autophagy-associated proteins. Renal histopathology was observed through hematoxylin-eosin staining. For cell-based assays, immortalized mouse podocytes were silenced for LRRK2 through siRNA transfection and exposed to LPS or cobalt chloride. Changes in cell viability were investigated using cell counting kit-8, flow cytometry and MTT assays. Expression of podocyte-specific markers and autophagy-associated proteins were analyzed by western blotting. We observed an increase in LRRK2 expression at 12 h post-LPS injection and IR surgery that was accompanied by enhanced autophagy. At 24 h post-treatment, both LRRK2 expression and autophagy declined. Kidney injury was most pronounced in mice treated with MLi-2. Podocytes silenced for LRRK2 showed a loss of cell viability, decreased levels of podocyte-specific protein expression and a suppression of autophagy. Together, these data reveal the protective effects of LRRK2 during AKI through enhanced podocyte autophagy and cell viability.
科研通智能强力驱动
Strongly Powered by AbleSci AI