已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Correlated RNN Framework to Quickly Generate Molecules with Desired Properties for Energetic Materials in the Low Data Regime

起爆 化学 循环神经网络 计算机科学 爆炸物 化学空间 集合(抽象数据类型) 人工智能 深度学习 数据集 人工神经网络 化学 药物发现 生物化学 有机化学 程序设计语言
作者
Chuan Li,Chenghui Wang,Ming Sun,Yan Zeng,Yuan Yuan,Qiaolin Gou,Guangchuan Wang,Yanzhi Guo,Xuemei Pu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (20): 4873-4887 被引量:18
标识
DOI:10.1021/acs.jcim.2c00997
摘要

Motivated by the challenging of deep learning on the low data regime and the urgent demand for intelligent design on highly energetic materials, we explore a correlated deep learning framework, which consists of three recurrent neural networks (RNNs) correlated by the transfer learning strategy, to efficiently generate new energetic molecules with a high detonation velocity in the case of very limited data available. To avoid the dependence on the external big data set, data augmentation by fragment shuffling of 303 energetic compounds is utilized to produce 500,000 molecules to pretrain RNN, through which the model can learn sufficient structure knowledge. Then the pretrained RNN is fine-tuned by focusing on the 303 energetic compounds to generate 7153 molecules similar to the energetic compounds. In order to more reliably screen the molecules with a high detonation velocity, the SMILE enumeration augmentation coupled with the pretrained knowledge is utilized to build an RNN-based prediction model, through which R2 is boosted from 0.4446 to 0.9572. The comparable performance with the transfer learning strategy based on an existing big database (ChEMBL) to produce the energetic molecules and drug-like ones further supports the effectiveness and generality of our strategy in the low data regime. High-precision quantum mechanics calculations further confirm that 35 new molecules present a higher detonation velocity and lower synthetic accessibility than the classic explosive RDX, along with good thermal stability. In particular, three new molecules are comparable to caged CL-20 in the detonation velocity. All the source codes and the data set are freely available at https://github.com/wangchenghuidream/RNNMGM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡一德发布了新的文献求助10
1秒前
谢生婷发布了新的文献求助10
3秒前
落后的听双完成签到 ,获得积分10
5秒前
8秒前
想人陪的飞薇完成签到 ,获得积分10
9秒前
Hello应助xufuture采纳,获得10
10秒前
城市公园发布了新的文献求助10
11秒前
FashionBoy应助土木僧采纳,获得10
13秒前
嘉心糖完成签到,获得积分0
14秒前
潇洒黑夜完成签到,获得积分10
17秒前
无花果应助城市公园采纳,获得10
17秒前
17秒前
深情安青应助winew采纳,获得30
18秒前
浮游应助陈花蕾采纳,获得10
22秒前
科研通AI5应助叶晓采纳,获得10
23秒前
24秒前
yetong完成签到 ,获得积分10
24秒前
LI完成签到,获得积分10
24秒前
飘萍过客完成签到,获得积分10
25秒前
土木僧发布了新的文献求助10
27秒前
淡淡应助科研通管家采纳,获得10
27秒前
我是老大应助科研通管家采纳,获得10
27秒前
领导范儿应助科研通管家采纳,获得10
27秒前
汉堡包应助科研通管家采纳,获得10
27秒前
斯文败类应助科研通管家采纳,获得10
27秒前
彭于晏应助科研通管家采纳,获得10
28秒前
28秒前
在水一方应助科研通管家采纳,获得30
28秒前
Ava应助科研通管家采纳,获得10
28秒前
彭于晏应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
wangjh发布了新的文献求助10
28秒前
29秒前
JDQW完成签到,获得积分10
30秒前
遇上就这样吧应助adam采纳,获得50
30秒前
30秒前
颜南风完成签到 ,获得积分10
32秒前
qc发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Athena操作手册 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5041751
求助须知:如何正确求助?哪些是违规求助? 4272467
关于积分的说明 13321046
捐赠科研通 4085146
什么是DOI,文献DOI怎么找? 2234994
邀请新用户注册赠送积分活动 1242582
关于科研通互助平台的介绍 1169327