Correlated RNN Framework to Quickly Generate Molecules with Desired Properties for Energetic Materials in the Low Data Regime

起爆 化学 循环神经网络 计算机科学 爆炸物 化学空间 集合(抽象数据类型) 人工智能 深度学习 数据集 人工神经网络 化学 药物发现 生物化学 有机化学 程序设计语言
作者
Chuan Li,Chenghui Wang,Ming Sun,Yan Zeng,Yuan Yuan,Qiaolin Gou,Guangchuan Wang,Yanzhi Guo,Xuemei Pu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (20): 4873-4887 被引量:16
标识
DOI:10.1021/acs.jcim.2c00997
摘要

Motivated by the challenging of deep learning on the low data regime and the urgent demand for intelligent design on highly energetic materials, we explore a correlated deep learning framework, which consists of three recurrent neural networks (RNNs) correlated by the transfer learning strategy, to efficiently generate new energetic molecules with a high detonation velocity in the case of very limited data available. To avoid the dependence on the external big data set, data augmentation by fragment shuffling of 303 energetic compounds is utilized to produce 500,000 molecules to pretrain RNN, through which the model can learn sufficient structure knowledge. Then the pretrained RNN is fine-tuned by focusing on the 303 energetic compounds to generate 7153 molecules similar to the energetic compounds. In order to more reliably screen the molecules with a high detonation velocity, the SMILE enumeration augmentation coupled with the pretrained knowledge is utilized to build an RNN-based prediction model, through which R2 is boosted from 0.4446 to 0.9572. The comparable performance with the transfer learning strategy based on an existing big database (ChEMBL) to produce the energetic molecules and drug-like ones further supports the effectiveness and generality of our strategy in the low data regime. High-precision quantum mechanics calculations further confirm that 35 new molecules present a higher detonation velocity and lower synthetic accessibility than the classic explosive RDX, along with good thermal stability. In particular, three new molecules are comparable to caged CL-20 in the detonation velocity. All the source codes and the data set are freely available at https://github.com/wangchenghuidream/RNNMGM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳重伊完成签到,获得积分10
1秒前
liangwang发布了新的文献求助10
3秒前
invincible完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
min发布了新的文献求助10
5秒前
Yolo发布了新的文献求助10
6秒前
mauve完成签到 ,获得积分10
6秒前
CodeCraft应助哇哇哇采纳,获得30
7秒前
李爱国应助聪明小虾米采纳,获得10
7秒前
8秒前
9秒前
Lam发布了新的文献求助10
9秒前
颜回完成签到,获得积分10
9秒前
天真的迎天完成签到,获得积分10
10秒前
在水一方应助开朗艳一采纳,获得10
12秒前
12秒前
达琳完成签到,获得积分20
14秒前
zzt发布了新的文献求助10
15秒前
chen发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
自觉曼岚完成签到,获得积分10
16秒前
17秒前
zmx完成签到 ,获得积分10
17秒前
liangwang完成签到,获得积分10
17秒前
18秒前
善学以致用应助Lam采纳,获得10
19秒前
20秒前
qweasdzxcqwe发布了新的文献求助10
22秒前
VV2VV发布了新的文献求助10
23秒前
陈博文发布了新的文献求助10
24秒前
zzt完成签到,获得积分10
24秒前
ww发布了新的文献求助10
25秒前
万能图书馆应助周游采纳,获得10
27秒前
倩倩发布了新的文献求助10
28秒前
黎日新完成签到,获得积分10
32秒前
32秒前
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975661
求助须知:如何正确求助?哪些是违规求助? 3520000
关于积分的说明 11200535
捐赠科研通 3256410
什么是DOI,文献DOI怎么找? 1798247
邀请新用户注册赠送积分活动 877490
科研通“疑难数据库(出版商)”最低求助积分说明 806390