Correlated RNN Framework to Quickly Generate Molecules with Desired Properties for Energetic Materials in the Low Data Regime

起爆 化学 循环神经网络 计算机科学 爆炸物 化学空间 集合(抽象数据类型) 人工智能 深度学习 数据集 人工神经网络 化学 药物发现 生物化学 有机化学 程序设计语言
作者
Chuan Li,Chenghui Wang,Ming Sun,Yan Zeng,Yuan Yuan,Qiaolin Gou,Guangchuan Wang,Yanzhi Guo,Xuemei Pu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (20): 4873-4887 被引量:15
标识
DOI:10.1021/acs.jcim.2c00997
摘要

Motivated by the challenging of deep learning on the low data regime and the urgent demand for intelligent design on highly energetic materials, we explore a correlated deep learning framework, which consists of three recurrent neural networks (RNNs) correlated by the transfer learning strategy, to efficiently generate new energetic molecules with a high detonation velocity in the case of very limited data available. To avoid the dependence on the external big data set, data augmentation by fragment shuffling of 303 energetic compounds is utilized to produce 500,000 molecules to pretrain RNN, through which the model can learn sufficient structure knowledge. Then the pretrained RNN is fine-tuned by focusing on the 303 energetic compounds to generate 7153 molecules similar to the energetic compounds. In order to more reliably screen the molecules with a high detonation velocity, the SMILE enumeration augmentation coupled with the pretrained knowledge is utilized to build an RNN-based prediction model, through which R2 is boosted from 0.4446 to 0.9572. The comparable performance with the transfer learning strategy based on an existing big database (ChEMBL) to produce the energetic molecules and drug-like ones further supports the effectiveness and generality of our strategy in the low data regime. High-precision quantum mechanics calculations further confirm that 35 new molecules present a higher detonation velocity and lower synthetic accessibility than the classic explosive RDX, along with good thermal stability. In particular, three new molecules are comparable to caged CL-20 in the detonation velocity. All the source codes and the data set are freely available at https://github.com/wangchenghuidream/RNNMGM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜乐多完成签到 ,获得积分10
1秒前
沸腾的大海应助Vision820采纳,获得10
1秒前
JINNA发布了新的文献求助10
1秒前
4秒前
6秒前
6秒前
ding应助Yang采纳,获得10
8秒前
olivia发布了新的文献求助10
10秒前
10秒前
内向苡完成签到,获得积分10
11秒前
落雪慕卿颜完成签到,获得积分10
11秒前
12秒前
鲁成危发布了新的文献求助10
12秒前
13秒前
飘1212完成签到,获得积分10
13秒前
科目三应助Rui采纳,获得10
13秒前
Jiaowen完成签到,获得积分10
13秒前
14秒前
GFCFHGJK发布了新的文献求助10
15秒前
朴实雨竹完成签到,获得积分10
15秒前
17秒前
Ray完成签到 ,获得积分10
17秒前
lysun发布了新的文献求助10
17秒前
阳光的青易完成签到,获得积分10
18秒前
故意的诗筠关注了科研通微信公众号
19秒前
19秒前
20秒前
isvolcano发布了新的文献求助10
20秒前
zyx完成签到 ,获得积分10
21秒前
olivia完成签到,获得积分10
21秒前
李健应助火花采纳,获得10
22秒前
FAN发布了新的文献求助20
22秒前
24秒前
wxl发布了新的文献求助10
24秒前
内永绘里发布了新的文献求助10
24秒前
狗妹那塞完成签到,获得积分10
25秒前
专注的水壶完成签到 ,获得积分10
28秒前
GFCFHGJK完成签到,获得积分20
29秒前
mage发布了新的文献求助10
29秒前
优雅含灵完成签到 ,获得积分10
31秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165183
求助须知:如何正确求助?哪些是违规求助? 2816164
关于积分的说明 7911772
捐赠科研通 2475878
什么是DOI,文献DOI怎么找? 1318401
科研通“疑难数据库(出版商)”最低求助积分说明 632143
版权声明 602388