Filter bubbles in recommender systems: Fact or fallacy—A systematic review

RSS 滤波器(信号处理) 计算机科学 个性化 互联网 集合(抽象数据类型) 数据科学 万维网 计算机视觉 程序设计语言
作者
Qazi Mohammad Areeb,Mohammad Nadeem,Shahab Saquib Sohail,Raza Imam,Faiyaz Doctor,Yassine Himeur,Amir Hussain,Abbes Amira
出处
期刊:Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery [Wiley]
卷期号:13 (6) 被引量:13
标识
DOI:10.1002/widm.1512
摘要

Abstract A filter bubble refers to the phenomenon where Internet customization effectively isolates individuals from diverse opinions or materials, resulting in their exposure to only a select set of content. This can lead to the reinforcement of existing attitudes, beliefs, or conditions. In this study, our primary focus is to investigate the impact of filter bubbles in recommender systems (RSs). This pioneering research aims to uncover the reasons behind this problem, explore potential solutions, and propose an integrated tool to help users avoid filter bubbles in RSs. To achieve this objective, we conduct a systematic literature review on the topic of filter bubbles in RSs. The reviewed articles are carefully analyzed and classified, providing valuable insights that inform the development of an integrated approach. Notably, our review reveals evidence of filter bubbles in RSs, highlighting several biases that contribute to their existence. Moreover, we propose mechanisms to mitigate the impact of filter bubbles and demonstrate that incorporating diversity into recommendations can potentially help alleviate this issue. The findings of this timely review will serve as a benchmark for researchers working in interdisciplinary fields such as privacy, artificial intelligence ethics, and RSs. Furthermore, it will open new avenues for future research in related domains, prompting further exploration and advancement in this critical area. This article is categorized under: Fundamental Concepts of Data and Knowledge > Human Centricity and User Interaction Application Areas > Internet Commercial, Legal, and Ethical Issues > Ethical Considerations Commercial, Legal, and Ethical Issues > Security and Privacy
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Stone发布了新的文献求助10
刚刚
吴未发布了新的文献求助10
刚刚
塇塇发布了新的文献求助10
刚刚
渤海少年发布了新的文献求助10
刚刚
清脆水卉完成签到,获得积分10
1秒前
Pyrene发布了新的文献求助30
1秒前
深情安青应助演化的蛙鱼采纳,获得10
2秒前
柯南风完成签到,获得积分10
2秒前
medlive2020完成签到,获得积分10
3秒前
nannannan发布了新的文献求助10
3秒前
Diudu完成签到,获得积分10
5秒前
小七2022完成签到,获得积分10
7秒前
小呆毛发布了新的文献求助10
8秒前
chen完成签到,获得积分10
8秒前
9秒前
Percy完成签到 ,获得积分10
9秒前
11秒前
Orange应助额尔其子采纳,获得10
13秒前
13秒前
文静大白发布了新的文献求助10
13秒前
李爱国应助北海未暖采纳,获得10
14秒前
kyj完成签到,获得积分10
15秒前
桐桐应助渤海少年采纳,获得10
17秒前
17秒前
Sisyphus发布了新的文献求助10
17秒前
rocketian完成签到,获得积分20
17秒前
18秒前
18秒前
万能图书馆应助小呆毛采纳,获得10
19秒前
感谢大哥的帮助完成签到 ,获得积分10
20秒前
李敬语完成签到,获得积分10
20秒前
归于晏完成签到,获得积分10
21秒前
22秒前
24秒前
废柴胖鱼发布了新的文献求助30
24秒前
wu完成签到,获得积分10
24秒前
欧阳半仙完成签到,获得积分10
25秒前
科研通AI5应助青藤采纳,获得10
25秒前
积极的天问完成签到,获得积分10
26秒前
27秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734620
求助须知:如何正确求助?哪些是违规求助? 3278545
关于积分的说明 10010093
捐赠科研通 2995206
什么是DOI,文献DOI怎么找? 1643271
邀请新用户注册赠送积分活动 781024
科研通“疑难数据库(出版商)”最低求助积分说明 749214