亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A graph-based interpretability method for deep neural networks

可解释性 计算机科学 人工智能 深层神经网络 人工神经网络 图形 卷积神经网络 深度学习 机器学习 模式识别(心理学) 理论计算机科学
作者
Wen Wang,Xiangwei Zheng,Lifeng Zhang,Zhen Cui,Chunyan Xu
出处
期刊:Neurocomputing [Elsevier]
卷期号:555: 126651-126651 被引量:7
标识
DOI:10.1016/j.neucom.2023.126651
摘要

With the development of artificial intelligence, the most representative deep learning has been applied to various fields, which is greatly influencing human society. However, deep neural networks (DNNs) are still a black-box model, and the process how they make decisions internally is still difficult to understand and control. At the same time, DNNs take up more hardware resources, resulting in high energy consumption. Therefore, it is significant to study the characteristics of deep AI models and deeply understand the interactions between parameters within AI models so as to improve the interpretability of DNNs, optimize their structure and increase their computational efficiency. In this paper, we propose a graph-based interpretability method for deep neural networks (GIMDNN). The running parameters of DNNs are modeled as a graph by using a kernel function or the Graph Transformer Networks (GTN), where the nodes of the graph are obtained by dimensional mapping of the parameters of the DNNs, and the edges are calculated by the Gaussian kernel function. The generated graphs are classified by a graph convolutional network (GCN). The association relationship between the adjacent layers and the running mechanism of DNNs are analyzed, and the importance of the parameters of each layer in the DNNs for the final classification result can be obtained. Convolutional neural networks (CNNs) are one of the most representative models in DNNs. The proposed method is experimentally evaluated on the CNNs. The experimental results show that the proposed method can interpret the associations among the weight parameters as well as the correlation between two adjacent layers. Therefore, the DNNs for special tasks, such as portable applications, edge computing, and so on, can be customized, the number of parameters can be reduced. It is valuable to interpret the operation and principle of CNNs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
打打应助努力学习的小福采纳,获得10
15秒前
Cmqq发布了新的文献求助10
16秒前
26秒前
29秒前
37秒前
haan完成签到,获得积分10
39秒前
haan发布了新的文献求助10
41秒前
义气幼珊完成签到 ,获得积分10
43秒前
44秒前
柳贯一完成签到,获得积分10
46秒前
爆米花应助haan采纳,获得10
46秒前
充电宝应助Cmqq采纳,获得10
49秒前
优美紫槐应助健康的远航采纳,获得10
51秒前
有风的地方完成签到 ,获得积分10
1分钟前
YujieJin完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Cmqq发布了新的文献求助10
1分钟前
wrry完成签到,获得积分10
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
陶醉的烤鸡完成签到 ,获得积分10
1分钟前
丘比特应助Cmqq采纳,获得10
1分钟前
1分钟前
1分钟前
小年小少发布了新的文献求助10
1分钟前
Dr. Chen发布了新的文献求助10
1分钟前
令狐冲完成签到 ,获得积分10
1分钟前
Cassiel完成签到,获得积分10
1分钟前
hahahan完成签到 ,获得积分10
1分钟前
上官若男应助Passion采纳,获得10
2分钟前
2分钟前
lll完成签到 ,获得积分10
2分钟前
wrry发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599747
求助须知:如何正确求助?哪些是违规求助? 4685478
关于积分的说明 14838528
捐赠科研通 4670257
什么是DOI,文献DOI怎么找? 2538191
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470898