清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A graph-based interpretability method for deep neural networks

可解释性 计算机科学 人工智能 深层神经网络 人工神经网络 图形 卷积神经网络 深度学习 机器学习 模式识别(心理学) 理论计算机科学
作者
Wen Wang,Xiangwei Zheng,Lifeng Zhang,Zhen Cui,Chunyan Xu
出处
期刊:Neurocomputing [Elsevier]
卷期号:555: 126651-126651 被引量:7
标识
DOI:10.1016/j.neucom.2023.126651
摘要

With the development of artificial intelligence, the most representative deep learning has been applied to various fields, which is greatly influencing human society. However, deep neural networks (DNNs) are still a black-box model, and the process how they make decisions internally is still difficult to understand and control. At the same time, DNNs take up more hardware resources, resulting in high energy consumption. Therefore, it is significant to study the characteristics of deep AI models and deeply understand the interactions between parameters within AI models so as to improve the interpretability of DNNs, optimize their structure and increase their computational efficiency. In this paper, we propose a graph-based interpretability method for deep neural networks (GIMDNN). The running parameters of DNNs are modeled as a graph by using a kernel function or the Graph Transformer Networks (GTN), where the nodes of the graph are obtained by dimensional mapping of the parameters of the DNNs, and the edges are calculated by the Gaussian kernel function. The generated graphs are classified by a graph convolutional network (GCN). The association relationship between the adjacent layers and the running mechanism of DNNs are analyzed, and the importance of the parameters of each layer in the DNNs for the final classification result can be obtained. Convolutional neural networks (CNNs) are one of the most representative models in DNNs. The proposed method is experimentally evaluated on the CNNs. The experimental results show that the proposed method can interpret the associations among the weight parameters as well as the correlation between two adjacent layers. Therefore, the DNNs for special tasks, such as portable applications, edge computing, and so on, can be customized, the number of parameters can be reduced. It is valuable to interpret the operation and principle of CNNs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助kukudou2采纳,获得10
21秒前
阿里完成签到,获得积分10
30秒前
31秒前
Fairy发布了新的文献求助10
34秒前
Sunny完成签到,获得积分10
1分钟前
lling完成签到 ,获得积分10
1分钟前
随心所欲完成签到 ,获得积分10
1分钟前
2分钟前
伯劳发布了新的文献求助10
3分钟前
neversay4ever完成签到 ,获得积分10
3分钟前
计划完成签到,获得积分10
3分钟前
dalei001完成签到 ,获得积分10
4分钟前
li完成签到 ,获得积分10
4分钟前
Alisha完成签到,获得积分10
4分钟前
T723完成签到 ,获得积分10
4分钟前
桦奕兮完成签到 ,获得积分10
5分钟前
悠树里完成签到,获得积分10
5分钟前
5分钟前
飘逸剑发布了新的文献求助10
5分钟前
无极2023完成签到 ,获得积分10
5分钟前
大个应助飘逸剑采纳,获得10
5分钟前
小马甲应助飞翔的企鹅采纳,获得20
6分钟前
6分钟前
taster发布了新的文献求助10
6分钟前
情怀应助taster采纳,获得10
6分钟前
7分钟前
7分钟前
飞翔的企鹅完成签到,获得积分10
7分钟前
7分钟前
静静完成签到,获得积分10
7分钟前
勤奋流沙完成签到 ,获得积分10
8分钟前
8分钟前
要减肥的春天完成签到,获得积分10
8分钟前
yong完成签到 ,获得积分10
9分钟前
万能图书馆应助1577采纳,获得10
9分钟前
9分钟前
1577发布了新的文献求助10
9分钟前
1577完成签到,获得积分10
9分钟前
wangermazi完成签到,获得积分0
9分钟前
独特的师完成签到,获得积分10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635197
求助须知:如何正确求助?哪些是违规求助? 4735116
关于积分的说明 14989861
捐赠科研通 4792883
什么是DOI,文献DOI怎么找? 2560055
邀请新用户注册赠送积分活动 1520241
关于科研通互助平台的介绍 1480364