已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A graph-based interpretability method for deep neural networks

可解释性 计算机科学 人工智能 深层神经网络 人工神经网络 图形 卷积神经网络 深度学习 机器学习 模式识别(心理学) 理论计算机科学
作者
Wen Wang,Xiangwei Zheng,Lifeng Zhang,Zhen Cui,Chunyan Xu
出处
期刊:Neurocomputing [Elsevier]
卷期号:555: 126651-126651 被引量:7
标识
DOI:10.1016/j.neucom.2023.126651
摘要

With the development of artificial intelligence, the most representative deep learning has been applied to various fields, which is greatly influencing human society. However, deep neural networks (DNNs) are still a black-box model, and the process how they make decisions internally is still difficult to understand and control. At the same time, DNNs take up more hardware resources, resulting in high energy consumption. Therefore, it is significant to study the characteristics of deep AI models and deeply understand the interactions between parameters within AI models so as to improve the interpretability of DNNs, optimize their structure and increase their computational efficiency. In this paper, we propose a graph-based interpretability method for deep neural networks (GIMDNN). The running parameters of DNNs are modeled as a graph by using a kernel function or the Graph Transformer Networks (GTN), where the nodes of the graph are obtained by dimensional mapping of the parameters of the DNNs, and the edges are calculated by the Gaussian kernel function. The generated graphs are classified by a graph convolutional network (GCN). The association relationship between the adjacent layers and the running mechanism of DNNs are analyzed, and the importance of the parameters of each layer in the DNNs for the final classification result can be obtained. Convolutional neural networks (CNNs) are one of the most representative models in DNNs. The proposed method is experimentally evaluated on the CNNs. The experimental results show that the proposed method can interpret the associations among the weight parameters as well as the correlation between two adjacent layers. Therefore, the DNNs for special tasks, such as portable applications, edge computing, and so on, can be customized, the number of parameters can be reduced. It is valuable to interpret the operation and principle of CNNs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优美的冰巧完成签到 ,获得积分10
1秒前
CH11发布了新的文献求助10
1秒前
2秒前
研友_LpQGjn发布了新的文献求助10
3秒前
禾口王完成签到,获得积分10
3秒前
5秒前
6秒前
木土完成签到,获得积分10
7秒前
Lucas应助杨婵采纳,获得10
7秒前
ZUOSG完成签到,获得积分10
7秒前
喜相逢发布了新的文献求助10
7秒前
陆吉发布了新的文献求助10
8秒前
8秒前
wanci应助小米采纳,获得10
9秒前
飞扬完成签到,获得积分10
9秒前
和谐的碧空给和谐的碧空的求助进行了留言
10秒前
自私的猫发布了新的文献求助10
11秒前
11秒前
12秒前
14秒前
14秒前
情怀应助马楼采纳,获得10
15秒前
zhfliang完成签到,获得积分10
15秒前
清新的柏柳应助予秋采纳,获得10
15秒前
自然函发布了新的文献求助10
16秒前
16秒前
取名字脑细胞全废完成签到,获得积分10
17秒前
18秒前
18秒前
fx完成签到 ,获得积分10
19秒前
20秒前
无限绮南发布了新的文献求助10
20秒前
21秒前
21秒前
真实的珠发布了新的文献求助10
22秒前
杨婵发布了新的文献求助10
22秒前
24秒前
禾口王发布了新的文献求助10
25秒前
25秒前
蛋堡发布了新的文献求助10
25秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754009
求助须知:如何正确求助?哪些是违规求助? 5483861
关于积分的说明 15379371
捐赠科研通 4892757
什么是DOI,文献DOI怎么找? 2631473
邀请新用户注册赠送积分活动 1579513
关于科研通互助平台的介绍 1535218