亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A graph-based interpretability method for deep neural networks

可解释性 计算机科学 人工智能 深层神经网络 人工神经网络 图形 卷积神经网络 深度学习 机器学习 模式识别(心理学) 理论计算机科学
作者
Wen Wang,Xiangwei Zheng,Lifeng Zhang,Zhen Cui,Chunyan Xu
出处
期刊:Neurocomputing [Elsevier]
卷期号:555: 126651-126651 被引量:7
标识
DOI:10.1016/j.neucom.2023.126651
摘要

With the development of artificial intelligence, the most representative deep learning has been applied to various fields, which is greatly influencing human society. However, deep neural networks (DNNs) are still a black-box model, and the process how they make decisions internally is still difficult to understand and control. At the same time, DNNs take up more hardware resources, resulting in high energy consumption. Therefore, it is significant to study the characteristics of deep AI models and deeply understand the interactions between parameters within AI models so as to improve the interpretability of DNNs, optimize their structure and increase their computational efficiency. In this paper, we propose a graph-based interpretability method for deep neural networks (GIMDNN). The running parameters of DNNs are modeled as a graph by using a kernel function or the Graph Transformer Networks (GTN), where the nodes of the graph are obtained by dimensional mapping of the parameters of the DNNs, and the edges are calculated by the Gaussian kernel function. The generated graphs are classified by a graph convolutional network (GCN). The association relationship between the adjacent layers and the running mechanism of DNNs are analyzed, and the importance of the parameters of each layer in the DNNs for the final classification result can be obtained. Convolutional neural networks (CNNs) are one of the most representative models in DNNs. The proposed method is experimentally evaluated on the CNNs. The experimental results show that the proposed method can interpret the associations among the weight parameters as well as the correlation between two adjacent layers. Therefore, the DNNs for special tasks, such as portable applications, edge computing, and so on, can be customized, the number of parameters can be reduced. It is valuable to interpret the operation and principle of CNNs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
体贴花卷发布了新的文献求助10
1秒前
大模型应助世良采纳,获得10
4秒前
9秒前
汉堡包应助体贴花卷采纳,获得10
26秒前
柴胡完成签到,获得积分10
36秒前
38秒前
世良发布了新的文献求助10
41秒前
林大壮发布了新的文献求助10
58秒前
1分钟前
1分钟前
体贴花卷发布了新的文献求助10
1分钟前
Ru完成签到 ,获得积分10
1分钟前
星辰大海应助体贴花卷采纳,获得10
1分钟前
1分钟前
chen发布了新的文献求助10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
思源应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
张张完成签到 ,获得积分10
1分钟前
科研通AI6应助chen采纳,获得10
1分钟前
领导范儿应助世良采纳,获得10
1分钟前
xuanxuan完成签到 ,获得积分10
1分钟前
cherish完成签到,获得积分10
1分钟前
进击的PhD完成签到 ,获得积分0
1分钟前
1分钟前
儒雅完成签到 ,获得积分10
1分钟前
世良发布了新的文献求助10
1分钟前
浮游应助坦率的枕头采纳,获得10
2分钟前
坦率的枕头完成签到,获得积分10
2分钟前
肖恩完成签到,获得积分10
2分钟前
MWY完成签到,获得积分10
2分钟前
科研通AI6应助浪里白条采纳,获得10
2分钟前
李爱国应助欣喜的广山采纳,获得10
2分钟前
2分钟前
世良发布了新的文献求助10
2分钟前
科目三应助凌洛尘采纳,获得10
2分钟前
2分钟前
Jessie完成签到 ,获得积分10
2分钟前
马克发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650780
求助须知:如何正确求助?哪些是违规求助? 4781689
关于积分的说明 15052597
捐赠科研通 4809594
什么是DOI,文献DOI怎么找? 2572392
邀请新用户注册赠送积分活动 1528494
关于科研通互助平台的介绍 1487373