A graph-based interpretability method for deep neural networks

可解释性 计算机科学 人工智能 深层神经网络 人工神经网络 图形 卷积神经网络 深度学习 机器学习 模式识别(心理学) 理论计算机科学
作者
Wen Wang,Xiangwei Zheng,Lifeng Zhang,Zhen Cui,Chunyan Xu
出处
期刊:Neurocomputing [Elsevier]
卷期号:555: 126651-126651 被引量:7
标识
DOI:10.1016/j.neucom.2023.126651
摘要

With the development of artificial intelligence, the most representative deep learning has been applied to various fields, which is greatly influencing human society. However, deep neural networks (DNNs) are still a black-box model, and the process how they make decisions internally is still difficult to understand and control. At the same time, DNNs take up more hardware resources, resulting in high energy consumption. Therefore, it is significant to study the characteristics of deep AI models and deeply understand the interactions between parameters within AI models so as to improve the interpretability of DNNs, optimize their structure and increase their computational efficiency. In this paper, we propose a graph-based interpretability method for deep neural networks (GIMDNN). The running parameters of DNNs are modeled as a graph by using a kernel function or the Graph Transformer Networks (GTN), where the nodes of the graph are obtained by dimensional mapping of the parameters of the DNNs, and the edges are calculated by the Gaussian kernel function. The generated graphs are classified by a graph convolutional network (GCN). The association relationship between the adjacent layers and the running mechanism of DNNs are analyzed, and the importance of the parameters of each layer in the DNNs for the final classification result can be obtained. Convolutional neural networks (CNNs) are one of the most representative models in DNNs. The proposed method is experimentally evaluated on the CNNs. The experimental results show that the proposed method can interpret the associations among the weight parameters as well as the correlation between two adjacent layers. Therefore, the DNNs for special tasks, such as portable applications, edge computing, and so on, can be customized, the number of parameters can be reduced. It is valuable to interpret the operation and principle of CNNs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阳光的小笼包完成签到,获得积分10
1秒前
科研通AI6应助正正采纳,获得10
1秒前
英俊的铭应助666采纳,获得10
1秒前
一小揪儿完成签到,获得积分10
1秒前
sharon发布了新的文献求助100
1秒前
lihaha完成签到 ,获得积分10
1秒前
钟金男完成签到,获得积分10
2秒前
郁金香发布了新的文献求助10
2秒前
3秒前
yy发布了新的文献求助10
3秒前
完美世界应助阿司匹林采纳,获得10
3秒前
小啵发布了新的文献求助10
3秒前
SciGPT应助朴素的半芹采纳,获得10
3秒前
5秒前
甜蜜耳机完成签到 ,获得积分10
5秒前
5秒前
彭于晏应助xiaolaoshuboshi采纳,获得10
5秒前
Zsx完成签到,获得积分10
5秒前
光敏剂发布了新的文献求助10
5秒前
Raymond完成签到,获得积分0
5秒前
慕青应助GCY采纳,获得10
5秒前
科研通AI6应助Tomasong采纳,获得10
6秒前
guozi发布了新的文献求助10
6秒前
孙友浩发布了新的文献求助10
6秒前
雾失楼台完成签到,获得积分10
6秒前
郁金香完成签到,获得积分10
7秒前
8秒前
8秒前
英勇的香之完成签到,获得积分10
8秒前
aLIgn驳回了好好应助
8秒前
赘婿应助小啵采纳,获得10
9秒前
zhonglv7应助crystal采纳,获得10
9秒前
zhonglv7应助crystal采纳,获得10
9秒前
10秒前
yangyijx发布了新的文献求助10
10秒前
10秒前
忆塔基完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
阿司匹林完成签到,获得积分20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652169
求助须知:如何正确求助?哪些是违规求助? 4786896
关于积分的说明 15058821
捐赠科研通 4810805
什么是DOI,文献DOI怎么找? 2573410
邀请新用户注册赠送积分活动 1529283
关于科研通互助平台的介绍 1488184