A graph-based interpretability method for deep neural networks

可解释性 计算机科学 人工智能 深层神经网络 人工神经网络 图形 卷积神经网络 深度学习 机器学习 模式识别(心理学) 理论计算机科学
作者
Wen Wang,Xiangwei Zheng,Lifeng Zhang,Zhen Cui,Chunyan Xu
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:555: 126651-126651 被引量:7
标识
DOI:10.1016/j.neucom.2023.126651
摘要

With the development of artificial intelligence, the most representative deep learning has been applied to various fields, which is greatly influencing human society. However, deep neural networks (DNNs) are still a black-box model, and the process how they make decisions internally is still difficult to understand and control. At the same time, DNNs take up more hardware resources, resulting in high energy consumption. Therefore, it is significant to study the characteristics of deep AI models and deeply understand the interactions between parameters within AI models so as to improve the interpretability of DNNs, optimize their structure and increase their computational efficiency. In this paper, we propose a graph-based interpretability method for deep neural networks (GIMDNN). The running parameters of DNNs are modeled as a graph by using a kernel function or the Graph Transformer Networks (GTN), where the nodes of the graph are obtained by dimensional mapping of the parameters of the DNNs, and the edges are calculated by the Gaussian kernel function. The generated graphs are classified by a graph convolutional network (GCN). The association relationship between the adjacent layers and the running mechanism of DNNs are analyzed, and the importance of the parameters of each layer in the DNNs for the final classification result can be obtained. Convolutional neural networks (CNNs) are one of the most representative models in DNNs. The proposed method is experimentally evaluated on the CNNs. The experimental results show that the proposed method can interpret the associations among the weight parameters as well as the correlation between two adjacent layers. Therefore, the DNNs for special tasks, such as portable applications, edge computing, and so on, can be customized, the number of parameters can be reduced. It is valuable to interpret the operation and principle of CNNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
Wow发布了新的文献求助10
1秒前
Lucas应助SZY采纳,获得10
2秒前
2秒前
FashionBoy应助谢同学采纳,获得10
2秒前
2秒前
2秒前
所所应助Sayhai采纳,获得10
2秒前
3秒前
有求必_应发布了新的文献求助10
3秒前
暮光不ling发布了新的文献求助10
4秒前
4秒前
孤独的夜行喵关注了科研通微信公众号
4秒前
4秒前
4秒前
mia发布了新的文献求助10
4秒前
4秒前
我的白起是国服完成签到 ,获得积分10
5秒前
蛋蛋白完成签到,获得积分20
6秒前
个性的紫菜应助yulia采纳,获得20
6秒前
6秒前
Gotyababy发布了新的文献求助10
6秒前
7秒前
7秒前
pakono发布了新的文献求助20
8秒前
科研通AI5应助温柔的婷采纳,获得30
8秒前
Sara发布了新的文献求助10
9秒前
斑驳发布了新的文献求助10
9秒前
秦艽发布了新的文献求助10
9秒前
乐乐应助无语的千儿采纳,获得10
9秒前
9秒前
9秒前
FashionBoy应助zifeimo采纳,获得10
9秒前
9秒前
平淡的快乐完成签到,获得积分10
9秒前
肉脸小鱼完成签到 ,获得积分10
9秒前
9秒前
英姑应助愉快迎荷采纳,获得10
10秒前
暮光不ling完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403