A graph-based interpretability method for deep neural networks

可解释性 计算机科学 人工智能 深层神经网络 人工神经网络 图形 卷积神经网络 深度学习 机器学习 模式识别(心理学) 理论计算机科学
作者
Wen Wang,Xiangwei Zheng,Lifeng Zhang,Zhen Cui,Chunyan Xu
出处
期刊:Neurocomputing [Elsevier]
卷期号:555: 126651-126651 被引量:7
标识
DOI:10.1016/j.neucom.2023.126651
摘要

With the development of artificial intelligence, the most representative deep learning has been applied to various fields, which is greatly influencing human society. However, deep neural networks (DNNs) are still a black-box model, and the process how they make decisions internally is still difficult to understand and control. At the same time, DNNs take up more hardware resources, resulting in high energy consumption. Therefore, it is significant to study the characteristics of deep AI models and deeply understand the interactions between parameters within AI models so as to improve the interpretability of DNNs, optimize their structure and increase their computational efficiency. In this paper, we propose a graph-based interpretability method for deep neural networks (GIMDNN). The running parameters of DNNs are modeled as a graph by using a kernel function or the Graph Transformer Networks (GTN), where the nodes of the graph are obtained by dimensional mapping of the parameters of the DNNs, and the edges are calculated by the Gaussian kernel function. The generated graphs are classified by a graph convolutional network (GCN). The association relationship between the adjacent layers and the running mechanism of DNNs are analyzed, and the importance of the parameters of each layer in the DNNs for the final classification result can be obtained. Convolutional neural networks (CNNs) are one of the most representative models in DNNs. The proposed method is experimentally evaluated on the CNNs. The experimental results show that the proposed method can interpret the associations among the weight parameters as well as the correlation between two adjacent layers. Therefore, the DNNs for special tasks, such as portable applications, edge computing, and so on, can be customized, the number of parameters can be reduced. It is valuable to interpret the operation and principle of CNNs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Egoist完成签到,获得积分0
1秒前
无极微光应助红红酱采纳,获得30
2秒前
罗浩发布了新的文献求助10
2秒前
2秒前
AA1完成签到,获得积分10
4秒前
蜗牛发布了新的文献求助30
4秒前
mouxq发布了新的文献求助10
6秒前
7秒前
nessa完成签到 ,获得积分10
8秒前
CGN发布了新的文献求助10
9秒前
浮游应助Jay采纳,获得10
9秒前
panqi77完成签到,获得积分20
10秒前
和谐听白发布了新的文献求助10
11秒前
lv完成签到,获得积分10
13秒前
华仔应助Raunio采纳,获得10
16秒前
乐乐应助背后一江采纳,获得10
18秒前
野原完成签到,获得积分20
19秒前
李健应助橘子夏采纳,获得10
20秒前
22秒前
研友_VZG7GZ应助高高乌冬面采纳,获得10
23秒前
领导范儿应助野原采纳,获得10
25秒前
吾日三省吾身完成签到,获得积分10
26秒前
kk发布了新的文献求助10
27秒前
31秒前
niu完成签到,获得积分10
33秒前
35秒前
35秒前
大龙哥886应助旺旺采纳,获得10
36秒前
38秒前
123lx完成签到,获得积分10
40秒前
mouxq发布了新的文献求助10
40秒前
yyx238666发布了新的文献求助10
42秒前
你猜猜看发布了新的文献求助10
42秒前
Szw666完成签到,获得积分10
42秒前
43秒前
兰高锋完成签到,获得积分10
44秒前
过往匆匆发布了新的文献求助10
45秒前
52秒前
糊涂涂完成签到,获得积分20
52秒前
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5566814
求助须知:如何正确求助?哪些是违规求助? 4651492
关于积分的说明 14696596
捐赠科研通 4593548
什么是DOI,文献DOI怎么找? 2520215
邀请新用户注册赠送积分活动 1492434
关于科研通互助平台的介绍 1463528