A graph-based interpretability method for deep neural networks

可解释性 计算机科学 人工智能 深层神经网络 人工神经网络 图形 卷积神经网络 深度学习 机器学习 模式识别(心理学) 理论计算机科学
作者
Wen Wang,Xiangwei Zheng,Lifeng Zhang,Zhen Cui,Chunyan Xu
出处
期刊:Neurocomputing [Elsevier]
卷期号:555: 126651-126651 被引量:7
标识
DOI:10.1016/j.neucom.2023.126651
摘要

With the development of artificial intelligence, the most representative deep learning has been applied to various fields, which is greatly influencing human society. However, deep neural networks (DNNs) are still a black-box model, and the process how they make decisions internally is still difficult to understand and control. At the same time, DNNs take up more hardware resources, resulting in high energy consumption. Therefore, it is significant to study the characteristics of deep AI models and deeply understand the interactions between parameters within AI models so as to improve the interpretability of DNNs, optimize their structure and increase their computational efficiency. In this paper, we propose a graph-based interpretability method for deep neural networks (GIMDNN). The running parameters of DNNs are modeled as a graph by using a kernel function or the Graph Transformer Networks (GTN), where the nodes of the graph are obtained by dimensional mapping of the parameters of the DNNs, and the edges are calculated by the Gaussian kernel function. The generated graphs are classified by a graph convolutional network (GCN). The association relationship between the adjacent layers and the running mechanism of DNNs are analyzed, and the importance of the parameters of each layer in the DNNs for the final classification result can be obtained. Convolutional neural networks (CNNs) are one of the most representative models in DNNs. The proposed method is experimentally evaluated on the CNNs. The experimental results show that the proposed method can interpret the associations among the weight parameters as well as the correlation between two adjacent layers. Therefore, the DNNs for special tasks, such as portable applications, edge computing, and so on, can be customized, the number of parameters can be reduced. It is valuable to interpret the operation and principle of CNNs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xcwy发布了新的文献求助30
刚刚
等候完成签到 ,获得积分10
1秒前
卡卡完成签到,获得积分20
1秒前
Ykn完成签到,获得积分10
1秒前
2秒前
3秒前
鸢翔flybird完成签到,获得积分10
3秒前
甜蜜的缘郡完成签到,获得积分10
4秒前
研友_ZGDQK8发布了新的文献求助10
7秒前
鹏程完成签到,获得积分10
7秒前
卡卡发布了新的文献求助10
7秒前
XIEQ发布了新的文献求助10
8秒前
8秒前
9秒前
medgreat发布了新的文献求助10
9秒前
精灵发布了新的文献求助20
11秒前
11秒前
大模型应助ayu采纳,获得10
11秒前
yysghr完成签到,获得积分10
11秒前
传奇3应助cc采纳,获得10
14秒前
yysghr发布了新的文献求助10
14秒前
thin完成签到,获得积分10
15秒前
ax8888发布了新的文献求助10
15秒前
17秒前
SUNLE完成签到,获得积分10
17秒前
zmj发布了新的文献求助10
17秒前
18秒前
18秒前
ZL完成签到 ,获得积分10
19秒前
传奇3应助卡卡采纳,获得10
19秒前
20秒前
20秒前
华仔应助追光者采纳,获得10
22秒前
脑洞疼应助木木采纳,获得10
23秒前
wuyi完成签到,获得积分10
23秒前
ayu发布了新的文献求助10
24秒前
25秒前
乌日发布了新的文献求助10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605773
求助须知:如何正确求助?哪些是违规求助? 4690365
关于积分的说明 14863216
捐赠科研通 4702671
什么是DOI,文献DOI怎么找? 2542266
邀请新用户注册赠送积分活动 1507862
关于科研通互助平台的介绍 1472159