A graph-based interpretability method for deep neural networks

可解释性 计算机科学 人工智能 深层神经网络 人工神经网络 图形 卷积神经网络 深度学习 机器学习 模式识别(心理学) 理论计算机科学
作者
Wen Wang,Xiangwei Zheng,Lifeng Zhang,Zhen Cui,Chunyan Xu
出处
期刊:Neurocomputing [Elsevier]
卷期号:555: 126651-126651 被引量:7
标识
DOI:10.1016/j.neucom.2023.126651
摘要

With the development of artificial intelligence, the most representative deep learning has been applied to various fields, which is greatly influencing human society. However, deep neural networks (DNNs) are still a black-box model, and the process how they make decisions internally is still difficult to understand and control. At the same time, DNNs take up more hardware resources, resulting in high energy consumption. Therefore, it is significant to study the characteristics of deep AI models and deeply understand the interactions between parameters within AI models so as to improve the interpretability of DNNs, optimize their structure and increase their computational efficiency. In this paper, we propose a graph-based interpretability method for deep neural networks (GIMDNN). The running parameters of DNNs are modeled as a graph by using a kernel function or the Graph Transformer Networks (GTN), where the nodes of the graph are obtained by dimensional mapping of the parameters of the DNNs, and the edges are calculated by the Gaussian kernel function. The generated graphs are classified by a graph convolutional network (GCN). The association relationship between the adjacent layers and the running mechanism of DNNs are analyzed, and the importance of the parameters of each layer in the DNNs for the final classification result can be obtained. Convolutional neural networks (CNNs) are one of the most representative models in DNNs. The proposed method is experimentally evaluated on the CNNs. The experimental results show that the proposed method can interpret the associations among the weight parameters as well as the correlation between two adjacent layers. Therefore, the DNNs for special tasks, such as portable applications, edge computing, and so on, can be customized, the number of parameters can be reduced. It is valuable to interpret the operation and principle of CNNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jt完成签到,获得积分10
刚刚
lzx完成签到,获得积分10
1秒前
1秒前
fys131415发布了新的文献求助10
2秒前
Druid发布了新的文献求助10
2秒前
4秒前
QiangZi发布了新的文献求助10
5秒前
hanyue完成签到,获得积分10
6秒前
cheezburger应助小可爱采纳,获得10
7秒前
打打应助忧伤的丁丁采纳,获得10
7秒前
8秒前
8秒前
Hello应助加油采纳,获得10
8秒前
科研通AI2S应助李月采纳,获得50
9秒前
10秒前
汪礼艳完成签到,获得积分10
10秒前
tender完成签到,获得积分10
11秒前
钮以南完成签到,获得积分10
13秒前
13秒前
MrLing发布了新的文献求助30
14秒前
复杂的莫茗完成签到,获得积分20
14秒前
Xltox完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
leo_twli发布了新的文献求助10
15秒前
964230130完成签到,获得积分10
16秒前
16秒前
忧虑的雁凡完成签到,获得积分20
16秒前
科目三应助ncuwzq采纳,获得30
18秒前
19秒前
pluto应助Druid采纳,获得10
19秒前
傢誠发布了新的文献求助10
19秒前
19秒前
20秒前
yufanhui应助panisa采纳,获得10
20秒前
21秒前
加油发布了新的文献求助10
22秒前
23秒前
23秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3236305
求助须知:如何正确求助?哪些是违规求助? 2882051
关于积分的说明 8224671
捐赠科研通 2550007
什么是DOI,文献DOI怎么找? 1378897
科研通“疑难数据库(出版商)”最低求助积分说明 648497
邀请新用户注册赠送积分活动 623986