A graph-based interpretability method for deep neural networks

可解释性 计算机科学 人工智能 深层神经网络 人工神经网络 图形 卷积神经网络 深度学习 机器学习 模式识别(心理学) 理论计算机科学
作者
Wen Wang,Xiangwei Zheng,Lifeng Zhang,Zhen Cui,Chunyan Xu
出处
期刊:Neurocomputing [Elsevier]
卷期号:555: 126651-126651 被引量:7
标识
DOI:10.1016/j.neucom.2023.126651
摘要

With the development of artificial intelligence, the most representative deep learning has been applied to various fields, which is greatly influencing human society. However, deep neural networks (DNNs) are still a black-box model, and the process how they make decisions internally is still difficult to understand and control. At the same time, DNNs take up more hardware resources, resulting in high energy consumption. Therefore, it is significant to study the characteristics of deep AI models and deeply understand the interactions between parameters within AI models so as to improve the interpretability of DNNs, optimize their structure and increase their computational efficiency. In this paper, we propose a graph-based interpretability method for deep neural networks (GIMDNN). The running parameters of DNNs are modeled as a graph by using a kernel function or the Graph Transformer Networks (GTN), where the nodes of the graph are obtained by dimensional mapping of the parameters of the DNNs, and the edges are calculated by the Gaussian kernel function. The generated graphs are classified by a graph convolutional network (GCN). The association relationship between the adjacent layers and the running mechanism of DNNs are analyzed, and the importance of the parameters of each layer in the DNNs for the final classification result can be obtained. Convolutional neural networks (CNNs) are one of the most representative models in DNNs. The proposed method is experimentally evaluated on the CNNs. The experimental results show that the proposed method can interpret the associations among the weight parameters as well as the correlation between two adjacent layers. Therefore, the DNNs for special tasks, such as portable applications, edge computing, and so on, can be customized, the number of parameters can be reduced. It is valuable to interpret the operation and principle of CNNs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
宁羽发布了新的文献求助10
2秒前
大块发布了新的文献求助10
3秒前
王之争霸完成签到,获得积分10
3秒前
3秒前
领导范儿应助高手采纳,获得10
4秒前
积极幻雪完成签到 ,获得积分10
5秒前
万能图书馆应助han采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
笨笨米卡应助龙弟弟采纳,获得10
7秒前
明芬发布了新的文献求助10
7秒前
Jasper应助人123456采纳,获得10
7秒前
7秒前
烟花应助哇晒采纳,获得10
7秒前
7秒前
打打应助阳光的道消采纳,获得10
8秒前
9秒前
fanfan完成签到,获得积分10
10秒前
波妞发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
12秒前
fjnm发布了新的文献求助10
12秒前
浮浮世世发布了新的文献求助10
13秒前
13秒前
Wei完成签到,获得积分10
15秒前
15秒前
16秒前
liamddd完成签到 ,获得积分10
18秒前
半农完成签到,获得积分0
18秒前
Sun完成签到,获得积分20
19秒前
19秒前
啊啾发布了新的文献求助60
19秒前
20秒前
Wwww发布了新的文献求助10
20秒前
shadow完成签到,获得积分10
20秒前
20秒前
无语的宛白完成签到 ,获得积分10
21秒前
笑点低的衬衫完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675369
求助须知:如何正确求助?哪些是违规求助? 4945575
关于积分的说明 15152710
捐赠科研通 4834585
什么是DOI,文献DOI怎么找? 2589541
邀请新用户注册赠送积分活动 1543247
关于科研通互助平台的介绍 1501131