A graph-based interpretability method for deep neural networks

可解释性 计算机科学 人工智能 深层神经网络 人工神经网络 图形 卷积神经网络 深度学习 机器学习 模式识别(心理学) 理论计算机科学
作者
Wen Wang,Xiangwei Zheng,Lifeng Zhang,Zhen Cui,Chunyan Xu
出处
期刊:Neurocomputing [Elsevier]
卷期号:555: 126651-126651 被引量:7
标识
DOI:10.1016/j.neucom.2023.126651
摘要

With the development of artificial intelligence, the most representative deep learning has been applied to various fields, which is greatly influencing human society. However, deep neural networks (DNNs) are still a black-box model, and the process how they make decisions internally is still difficult to understand and control. At the same time, DNNs take up more hardware resources, resulting in high energy consumption. Therefore, it is significant to study the characteristics of deep AI models and deeply understand the interactions between parameters within AI models so as to improve the interpretability of DNNs, optimize their structure and increase their computational efficiency. In this paper, we propose a graph-based interpretability method for deep neural networks (GIMDNN). The running parameters of DNNs are modeled as a graph by using a kernel function or the Graph Transformer Networks (GTN), where the nodes of the graph are obtained by dimensional mapping of the parameters of the DNNs, and the edges are calculated by the Gaussian kernel function. The generated graphs are classified by a graph convolutional network (GCN). The association relationship between the adjacent layers and the running mechanism of DNNs are analyzed, and the importance of the parameters of each layer in the DNNs for the final classification result can be obtained. Convolutional neural networks (CNNs) are one of the most representative models in DNNs. The proposed method is experimentally evaluated on the CNNs. The experimental results show that the proposed method can interpret the associations among the weight parameters as well as the correlation between two adjacent layers. Therefore, the DNNs for special tasks, such as portable applications, edge computing, and so on, can be customized, the number of parameters can be reduced. It is valuable to interpret the operation and principle of CNNs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
铱铱的胡萝卜完成签到,获得积分10
刚刚
刚刚
多喝开开发布了新的文献求助10
1秒前
陶醉怀蕾发布了新的文献求助10
2秒前
LDML发布了新的文献求助10
3秒前
AAA发布了新的文献求助10
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
领导范儿应助shekunxuan采纳,获得10
4秒前
翎宝完成签到 ,获得积分10
5秒前
善良的焦完成签到,获得积分10
5秒前
科研通AI6应助漂亮的黄豆采纳,获得10
5秒前
用心若镜2完成签到,获得积分10
6秒前
研友_LaV1xn发布了新的文献求助10
6秒前
6秒前
Orange应助菜菜果冻采纳,获得10
7秒前
7秒前
8秒前
英俊的铭应助懒癌晚期采纳,获得10
8秒前
Liangc333发布了新的文献求助10
9秒前
周运来完成签到,获得积分10
10秒前
10秒前
LDML完成签到,获得积分10
12秒前
大蛋儿发布了新的文献求助10
13秒前
小巧元槐关注了科研通微信公众号
13秒前
周周南完成签到 ,获得积分10
13秒前
吴254完成签到,获得积分10
15秒前
葛二蛋完成签到,获得积分0
15秒前
风中故事完成签到,获得积分10
16秒前
ppf完成签到,获得积分20
16秒前
17秒前
nekobeing发布了新的文献求助10
17秒前
18秒前
天天快乐应助黄臻采纳,获得10
18秒前
palette发布了新的文献求助10
18秒前
ljh1771完成签到,获得积分10
19秒前
甜蜜的阳光完成签到 ,获得积分10
19秒前
19秒前
风趣的亦巧完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643722
求助须知:如何正确求助?哪些是违规求助? 4761848
关于积分的说明 15022054
捐赠科研通 4801980
什么是DOI,文献DOI怎么找? 2567203
邀请新用户注册赠送积分活动 1524860
关于科研通互助平台的介绍 1484451