A graph-based interpretability method for deep neural networks

可解释性 计算机科学 人工智能 深层神经网络 人工神经网络 图形 卷积神经网络 深度学习 机器学习 模式识别(心理学) 理论计算机科学
作者
Wen Wang,Xiangwei Zheng,Lifeng Zhang,Zhen Cui,Chunyan Xu
出处
期刊:Neurocomputing [Elsevier]
卷期号:555: 126651-126651 被引量:7
标识
DOI:10.1016/j.neucom.2023.126651
摘要

With the development of artificial intelligence, the most representative deep learning has been applied to various fields, which is greatly influencing human society. However, deep neural networks (DNNs) are still a black-box model, and the process how they make decisions internally is still difficult to understand and control. At the same time, DNNs take up more hardware resources, resulting in high energy consumption. Therefore, it is significant to study the characteristics of deep AI models and deeply understand the interactions between parameters within AI models so as to improve the interpretability of DNNs, optimize their structure and increase their computational efficiency. In this paper, we propose a graph-based interpretability method for deep neural networks (GIMDNN). The running parameters of DNNs are modeled as a graph by using a kernel function or the Graph Transformer Networks (GTN), where the nodes of the graph are obtained by dimensional mapping of the parameters of the DNNs, and the edges are calculated by the Gaussian kernel function. The generated graphs are classified by a graph convolutional network (GCN). The association relationship between the adjacent layers and the running mechanism of DNNs are analyzed, and the importance of the parameters of each layer in the DNNs for the final classification result can be obtained. Convolutional neural networks (CNNs) are one of the most representative models in DNNs. The proposed method is experimentally evaluated on the CNNs. The experimental results show that the proposed method can interpret the associations among the weight parameters as well as the correlation between two adjacent layers. Therefore, the DNNs for special tasks, such as portable applications, edge computing, and so on, can be customized, the number of parameters can be reduced. It is valuable to interpret the operation and principle of CNNs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vvvv完成签到,获得积分10
刚刚
HHYYAA完成签到,获得积分10
1秒前
yin关闭了yin文献求助
2秒前
2秒前
孤巷的猫完成签到,获得积分10
2秒前
miumiu2024发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
YY发布了新的文献求助10
4秒前
仙女的小可爱完成签到 ,获得积分10
5秒前
Dskelf完成签到,获得积分10
5秒前
鲤鱼遥完成签到,获得积分10
5秒前
6秒前
打打应助结实大雁采纳,获得20
6秒前
6秒前
无忧发布了新的文献求助10
7秒前
李爱国应助ajjdnd采纳,获得10
7秒前
8秒前
面壁思过发布了新的文献求助10
10秒前
bkagyin应助拣尽南枝采纳,获得10
10秒前
yuC发布了新的文献求助30
11秒前
11秒前
hhhh完成签到,获得积分10
11秒前
Logan发布了新的文献求助10
12秒前
12秒前
tranphucthinh发布了新的文献求助10
13秒前
自由梦槐完成签到,获得积分10
14秒前
16秒前
科研通AI6应助开心的觅山采纳,获得20
16秒前
完美世界应助好好学习采纳,获得10
17秒前
19秒前
20秒前
大个应助superman采纳,获得10
20秒前
佳佳完成签到,获得积分10
20秒前
炒米完成签到,获得积分10
21秒前
pepsi发布了新的文献求助10
21秒前
21秒前
小蘑菇应助研友_Z7Xdl8采纳,获得10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642496
求助须知:如何正确求助?哪些是违规求助? 4758935
关于积分的说明 15017747
捐赠科研通 4801078
什么是DOI,文献DOI怎么找? 2566357
邀请新用户注册赠送积分活动 1524465
关于科研通互助平台的介绍 1483995