A graph-based interpretability method for deep neural networks

可解释性 计算机科学 人工智能 深层神经网络 人工神经网络 图形 卷积神经网络 深度学习 机器学习 模式识别(心理学) 理论计算机科学
作者
Wen Wang,Xiangwei Zheng,Lifeng Zhang,Zhen Cui,Chunyan Xu
出处
期刊:Neurocomputing [Elsevier]
卷期号:555: 126651-126651 被引量:7
标识
DOI:10.1016/j.neucom.2023.126651
摘要

With the development of artificial intelligence, the most representative deep learning has been applied to various fields, which is greatly influencing human society. However, deep neural networks (DNNs) are still a black-box model, and the process how they make decisions internally is still difficult to understand and control. At the same time, DNNs take up more hardware resources, resulting in high energy consumption. Therefore, it is significant to study the characteristics of deep AI models and deeply understand the interactions between parameters within AI models so as to improve the interpretability of DNNs, optimize their structure and increase their computational efficiency. In this paper, we propose a graph-based interpretability method for deep neural networks (GIMDNN). The running parameters of DNNs are modeled as a graph by using a kernel function or the Graph Transformer Networks (GTN), where the nodes of the graph are obtained by dimensional mapping of the parameters of the DNNs, and the edges are calculated by the Gaussian kernel function. The generated graphs are classified by a graph convolutional network (GCN). The association relationship between the adjacent layers and the running mechanism of DNNs are analyzed, and the importance of the parameters of each layer in the DNNs for the final classification result can be obtained. Convolutional neural networks (CNNs) are one of the most representative models in DNNs. The proposed method is experimentally evaluated on the CNNs. The experimental results show that the proposed method can interpret the associations among the weight parameters as well as the correlation between two adjacent layers. Therefore, the DNNs for special tasks, such as portable applications, edge computing, and so on, can be customized, the number of parameters can be reduced. It is valuable to interpret the operation and principle of CNNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助小小丫采纳,获得10
刚刚
5114发布了新的文献求助20
刚刚
Aha完成签到 ,获得积分10
1秒前
火星上的衣完成签到,获得积分10
1秒前
1秒前
1秒前
MZH发布了新的文献求助10
1秒前
少爷发布了新的文献求助10
2秒前
2秒前
SYLJ发布了新的文献求助10
2秒前
茉莉是个饱饱完成签到,获得积分10
3秒前
安青兰发布了新的文献求助10
3秒前
3秒前
MHCL完成签到 ,获得积分10
4秒前
4秒前
yyu完成签到,获得积分10
4秒前
4秒前
4秒前
顾矜应助琴香孙琴香采纳,获得10
5秒前
微笑的井完成签到 ,获得积分10
5秒前
温言发布了新的文献求助10
5秒前
5秒前
5秒前
shaoyu发布了新的文献求助10
6秒前
kkkrystal完成签到,获得积分10
7秒前
limmy发布了新的文献求助10
7秒前
7秒前
长情笑柳应助zp4采纳,获得10
7秒前
8秒前
奇美拉发布了新的文献求助10
8秒前
8秒前
默默善愁发布了新的文献求助10
8秒前
Han发布了新的文献求助20
9秒前
krsL发布了新的文献求助10
9秒前
夏夏完成签到,获得积分10
9秒前
aniver完成签到 ,获得积分10
9秒前
小张同学发布了新的文献求助10
9秒前
yjh729发布了新的文献求助10
9秒前
tang完成签到,获得积分10
9秒前
陈雨辰完成签到,获得积分20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5439360
求助须知:如何正确求助?哪些是违规求助? 4550482
关于积分的说明 14224867
捐赠科研通 4471458
什么是DOI,文献DOI怎么找? 2450361
邀请新用户注册赠送积分活动 1441216
关于科研通互助平台的介绍 1417865