亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Combining machine learning with high-content imaging to infer ciprofloxacin susceptibility in clinical isolates of Salmonella Typhimurium

环丙沙星 沙门氏菌 生物 抗菌剂 抗药性 病菌 微生物学 抗生素耐药性 细菌 计算生物学 抗生素 遗传学
作者
Stephen Baker,Tuan-Anh Tran,Sushmita Sridhar,Stephen T. Reece,Octavie Lunguya,Jan Jacobs,Sandra Van Puyvelde,Florian Marks,Gordon Dougan,Nicholas R. Thomson,Binh Nguyen,Pham The Bao
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3410109/v1
摘要

Abstract Antimicrobial resistance (AMR) is a growing public health crisis that requires innovative solutions. Presently we rely on exposing single organisms to an antimicrobial and growth to determine susceptibility; throughput and interpretation hinder our ability to rapidly distinguish between antimicrobial-susceptible and -resistant organisms isolated from clinical samples. Salmonella Typhimurium ( S. Typhimurium) is an enteric pathogen responsible for severe gastrointestinal illness in immunocompetent individuals and can also cause invasive disease in immunocompromised people. Despite widespread resistance, ciprofloxacin remains a common treatment, particularly in lower-resource settings, where the drug is given empirically. Here, we exploited high-content imaging to generate deep phenotyping of various S. Typhimurium isolates longitudinally exposed to increasing concentrations of ciprofloxacin. We applied machine learning algorithms to the resulting imaging data and demonstrated that individual isolates display distinct growth and morphological characteristics that clustered by time point and susceptibility to ciprofloxacin, which occurred independently of ciprofloxacin exposure. We used a further set of S. Typhimurium clinical isolates to test the ability of our algorithm to distinguish between ciprofloxacin-susceptible and -resistant isolates. We found that a random forest classifier could accurately predict how the organism would respond to ciprofloxacin without exposure to it or any prior knowledge of ciprofloxacin susceptibility. These results provide the first proof-of-principle for the use of high-content imaging with machine learning algorithms to predict drug susceptibility of clinical bacterial isolates. This technique can be exploited to identify drug-resistant bacteria more rapidly and accurately and may be an important tool in understanding the phenotypic impact of antimicrobials on the bacterial cell in order to identify drugs with new modes of action.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助恶恶么v采纳,获得10
4秒前
通科研完成签到 ,获得积分10
17秒前
45秒前
janie发布了新的文献求助10
51秒前
华仔应助janie采纳,获得50
56秒前
Stephhen完成签到,获得积分10
1分钟前
1分钟前
wisteety完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
高兴的谷菱完成签到,获得积分20
1分钟前
壮观的画笔完成签到 ,获得积分10
1分钟前
3分钟前
莫冰雪完成签到 ,获得积分10
3分钟前
科研通AI2S应助zhang采纳,获得10
3分钟前
3分钟前
小巫发布了新的文献求助10
3分钟前
4分钟前
4分钟前
eccentric发布了新的文献求助10
4分钟前
4分钟前
eccentric完成签到,获得积分10
4分钟前
zhangxr发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
Sandy完成签到 ,获得积分10
5分钟前
兴尽晚回舟完成签到,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
6分钟前
6分钟前
7分钟前
啊强完成签到 ,获得积分10
7分钟前
无限毛豆发布了新的文献求助10
7分钟前
xiaolang2004完成签到,获得积分10
7分钟前
上官若男应助无限毛豆采纳,获得10
7分钟前
莉莉安完成签到 ,获得积分10
7分钟前
7分钟前
knoren发布了新的文献求助10
7分钟前
DeaR完成签到 ,获得积分10
8分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139548
求助须知:如何正确求助?哪些是违规求助? 2790430
关于积分的说明 7795269
捐赠科研通 2446905
什么是DOI,文献DOI怎么找? 1301487
科研通“疑难数据库(出版商)”最低求助积分说明 626238
版权声明 601146