Positive-unlabeled learning for coronary artery segmentation in CCTA images

分割 计算机科学 体素 人工智能 推论 冠状动脉 模式识别(心理学) 动脉 基本事实 医学 内科学
作者
Fei Chen,Sulei Li,Chen Wei,Yue Zhang,Kaitai Guo,Zheng Yang,Feng Cao,Jimin Liang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105473-105473 被引量:1
标识
DOI:10.1016/j.bspc.2023.105473
摘要

Accurate three-dimensional (3D) segmentation of the coronary artery is an essential step in the quantitative analysis of the coronary arteries. However, due to the small size and complex morphology of the coronary arteries, voxel-by-voxel labeling of the complete coronary artery in 3D computed coronary tomography angiography images is both difficult and laborious. To alleviate the workload of annotating, it is possible to randomly label only a fraction of the positive samples and leave all remaining instances unlabeled, known as the positive-unlabeled (PU) learning problem. Due to the presence of coronary artery-like structures and the absence of negative annotations, we propose a novel sample-selection-based PU learning method for coronary artery segmentation. Specifically, only pseudo-negative labels (PNLs) are generated during the self-training process, and all data are further exploited implicitly using the teacher–student (TS) framework. To address the difficulty of detecting tiny coronary artery branches, we propose a post-processing method by exploiting the variance of multi-scale features in the inference stage. Extensive experiments were conducted on a self-constructed dataset and the publicly available ASOCA dataset. The results demonstrate that our proposed method performs better than baseline supervised and state-of-the-art PU learning methods. Notably, even in extreme cases where more than 80% of annotations are missing, our method still achieves significant gains. When the proportion of missing annotations is relatively low, our method even outperforms the backbone trained with ground truth annotations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
abe发布了新的文献求助10
1秒前
天天开心完成签到 ,获得积分10
1秒前
2秒前
3秒前
4秒前
所所应助clean采纳,获得10
5秒前
sad完成签到,获得积分10
6秒前
学术地瓜发布了新的文献求助10
6秒前
7秒前
8秒前
爱静静应助跳跃的访烟采纳,获得10
8秒前
在水一方应助圣晟胜采纳,获得10
9秒前
10秒前
10秒前
10秒前
segama完成签到 ,获得积分10
10秒前
在人中完成签到,获得积分10
10秒前
顾矜应助tangyuyi采纳,获得10
10秒前
我是老大应助满意冷荷采纳,获得10
13秒前
凝子老师发布了新的文献求助10
13秒前
Qinpy发布了新的文献求助20
14秒前
跳跃的访烟完成签到,获得积分10
14秒前
bkagyin应助janice采纳,获得10
15秒前
15秒前
clean发布了新的文献求助10
15秒前
会飞的木头应助Anquan采纳,获得10
17秒前
炫哥IRIS完成签到,获得积分10
17秒前
19秒前
思源应助凝子老师采纳,获得10
20秒前
hhx完成签到,获得积分10
22秒前
在水一方应助圣晟胜采纳,获得10
24秒前
希格斯玻色子完成签到,获得积分10
24秒前
27秒前
在人中发布了新的文献求助10
29秒前
小蘑菇应助学术地瓜采纳,获得10
29秒前
31秒前
苏苏发布了新的文献求助10
32秒前
胖蛋蛋蛋完成签到,获得积分10
36秒前
36秒前
热浪午后完成签到,获得积分10
38秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849