Positive-unlabeled learning for coronary artery segmentation in CCTA images

分割 计算机科学 体素 人工智能 推论 冠状动脉 模式识别(心理学) 动脉 基本事实 医学 内科学
作者
Fei Chen,Sulei Li,Chen Wei,Yue Zhang,Kaitai Guo,Yang Zheng,Feng Cao,Jimin Liang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105473-105473 被引量:7
标识
DOI:10.1016/j.bspc.2023.105473
摘要

Accurate three-dimensional (3D) segmentation of the coronary artery is an essential step in the quantitative analysis of the coronary arteries. However, due to the small size and complex morphology of the coronary arteries, voxel-by-voxel labeling of the complete coronary artery in 3D computed coronary tomography angiography images is both difficult and laborious. To alleviate the workload of annotating, it is possible to randomly label only a fraction of the positive samples and leave all remaining instances unlabeled, known as the positive-unlabeled (PU) learning problem. Due to the presence of coronary artery-like structures and the absence of negative annotations, we propose a novel sample-selection-based PU learning method for coronary artery segmentation. Specifically, only pseudo-negative labels (PNLs) are generated during the self-training process, and all data are further exploited implicitly using the teacher–student (TS) framework. To address the difficulty of detecting tiny coronary artery branches, we propose a post-processing method by exploiting the variance of multi-scale features in the inference stage. Extensive experiments were conducted on a self-constructed dataset and the publicly available ASOCA dataset. The results demonstrate that our proposed method performs better than baseline supervised and state-of-the-art PU learning methods. Notably, even in extreme cases where more than 80% of annotations are missing, our method still achieves significant gains. When the proportion of missing annotations is relatively low, our method even outperforms the backbone trained with ground truth annotations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助wisdom2wisdom采纳,获得10
2秒前
3秒前
3秒前
大力出奇迹完成签到,获得积分10
6秒前
6秒前
nono完成签到 ,获得积分10
6秒前
dsgfg发布了新的文献求助10
6秒前
DL发布了新的文献求助10
8秒前
ding应助make采纳,获得10
9秒前
PY完成签到,获得积分10
11秒前
16秒前
科研通AI2S应助Jeff采纳,获得10
17秒前
damian完成签到,获得积分10
17秒前
18秒前
18秒前
19秒前
21秒前
可爱的函函应助Grinde采纳,获得10
21秒前
哈哈发布了新的文献求助10
23秒前
能干的月光完成签到,获得积分10
23秒前
24秒前
wisdom2wisdom发布了新的文献求助10
24秒前
欢呼易形完成签到 ,获得积分10
24秒前
make发布了新的文献求助10
25秒前
26秒前
无奈雅霜发布了新的文献求助30
29秒前
Orange应助lei采纳,获得10
30秒前
默默善愁发布了新的文献求助30
31秒前
Alicia完成签到,获得积分10
33秒前
Orange应助土书采纳,获得30
36秒前
wisdom2wisdom完成签到,获得积分10
37秒前
哈哈完成签到,获得积分10
39秒前
开放草莓完成签到 ,获得积分10
39秒前
40秒前
41秒前
44秒前
叶子发布了新的文献求助10
48秒前
丫丫完成签到 ,获得积分10
50秒前
活泼的冬易完成签到,获得积分10
50秒前
俊逸书琴发布了新的文献求助10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560699
求助须知:如何正确求助?哪些是违规求助? 4646016
关于积分的说明 14676918
捐赠科研通 4587117
什么是DOI,文献DOI怎么找? 2516822
邀请新用户注册赠送积分活动 1490308
关于科研通互助平台的介绍 1461136