Positive-unlabeled learning for coronary artery segmentation in CCTA images

分割 计算机科学 体素 人工智能 推论 冠状动脉 模式识别(心理学) 动脉 基本事实 医学 内科学
作者
Fei Chen,Sulei Li,Chen Wei,Yue Zhang,Kaitai Guo,Zheng Yang,Feng Cao,Jimin Liang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105473-105473 被引量:3
标识
DOI:10.1016/j.bspc.2023.105473
摘要

Accurate three-dimensional (3D) segmentation of the coronary artery is an essential step in the quantitative analysis of the coronary arteries. However, due to the small size and complex morphology of the coronary arteries, voxel-by-voxel labeling of the complete coronary artery in 3D computed coronary tomography angiography images is both difficult and laborious. To alleviate the workload of annotating, it is possible to randomly label only a fraction of the positive samples and leave all remaining instances unlabeled, known as the positive-unlabeled (PU) learning problem. Due to the presence of coronary artery-like structures and the absence of negative annotations, we propose a novel sample-selection-based PU learning method for coronary artery segmentation. Specifically, only pseudo-negative labels (PNLs) are generated during the self-training process, and all data are further exploited implicitly using the teacher–student (TS) framework. To address the difficulty of detecting tiny coronary artery branches, we propose a post-processing method by exploiting the variance of multi-scale features in the inference stage. Extensive experiments were conducted on a self-constructed dataset and the publicly available ASOCA dataset. The results demonstrate that our proposed method performs better than baseline supervised and state-of-the-art PU learning methods. Notably, even in extreme cases where more than 80% of annotations are missing, our method still achieves significant gains. When the proportion of missing annotations is relatively low, our method even outperforms the backbone trained with ground truth annotations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yqb发布了新的文献求助20
1秒前
1秒前
打打应助小小学术人采纳,获得10
2秒前
2秒前
研友_VZG7GZ应助12281w采纳,获得10
2秒前
徐啊徐完成签到,获得积分10
2秒前
奋斗的猫咪应助louiselin采纳,获得50
2秒前
2秒前
2秒前
3秒前
123发布了新的文献求助10
3秒前
abby发布了新的文献求助30
3秒前
薛亚妮发布了新的文献求助10
4秒前
万能图书馆应助xiaohei采纳,获得10
4秒前
xxfsx应助quzhenzxxx采纳,获得50
4秒前
传奇3应助Wonder采纳,获得10
4秒前
大模型应助vvvg采纳,获得10
4秒前
清绘完成签到 ,获得积分10
4秒前
荷包蛋发布了新的文献求助10
4秒前
小孩儿发布了新的文献求助10
5秒前
5秒前
5秒前
7秒前
内向尔安完成签到,获得积分10
7秒前
7秒前
科研通AI6应助煜琪采纳,获得10
7秒前
俊逸小刺猬完成签到,获得积分10
7秒前
扎西德勒完成签到,获得积分20
7秒前
専心发布了新的文献求助10
8秒前
Lin.隽发布了新的文献求助10
9秒前
pj发布了新的文献求助30
9秒前
9秒前
9秒前
9秒前
佼佼者完成签到,获得积分10
9秒前
丘比特应助居里采纳,获得10
10秒前
zwlplant发布了新的文献求助10
10秒前
美好凝莲发布了新的文献求助10
10秒前
西门凡双完成签到,获得积分10
10秒前
于金正发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430202
求助须知:如何正确求助?哪些是违规求助? 4543438
关于积分的说明 14187210
捐赠科研通 4461576
什么是DOI,文献DOI怎么找? 2446244
邀请新用户注册赠送积分活动 1437490
关于科研通互助平台的介绍 1414381