Modeling strength characteristics of basalt fiber reinforced concrete using multiple explainable machine learning with a graphical user interface

图形用户界面 玄武岩纤维 计算机科学 纤维 接口(物质) 玄武岩 复合材料 材料科学 地质学 并行计算 操作系统 地球化学 最大气泡压力法 气泡
作者
W.K.V.J.B. Kulasooriya,R.S.S. Ranasinghe,Udara Sachinthana Perera,P. Thisovithan,I.U. Ekanayake,D.P.P. Meddage
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:20
标识
DOI:10.1038/s41598-023-40513-x
摘要

This study investigated the importance of applying explainable artificial intelligence (XAI) on different machine learning (ML) models developed to predict the strength characteristics of basalt-fiber reinforced concrete (BFRC). Even though ML is widely adopted in strength prediction in concrete, the black-box nature of predictions hinders the interpretation of results. Among several attempts to overcome this limitation by using explainable AI, researchers have employed only a single explanation method. In this study, we used three tree-based ML models (Decision tree, Gradient Boosting tree, and Light Gradient Boosting Machine) to predict the mechanical strength characteristics (compressive strength, flexural strength, and tensile strength) of basal fiber reinforced concrete (BFRC). For the first time, we employed two explanation methods (Shapley additive explanations (SHAP) and local interpretable model-agnostic explanations (LIME)) to provide explanations for all models. These explainable methods reveal the underlying decision-making criteria of complex machine learning models, improving the end user's trust. The comparison highlights that tree-based models obtained good accuracy in predicting strength characteristics yet, their explanations were different either by the magnitude of feature importance or the order of importance. This disagreement pushes towards complicated decision-making based on ML predictions which further stresses (1) extending XAI-based research in concrete strength predictions, and (2) involving domain experts to evaluate XAI results. The study concludes with the development of a "user-friendly computer application" which enables quick strength prediction of basalt fiber reinforced concrete (BFRC).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
corre完成签到,获得积分20
1秒前
spencerleo发布了新的文献求助10
1秒前
科研通AI2S应助wr采纳,获得10
2秒前
甜甜玫瑰应助wr采纳,获得10
2秒前
InfoNinja应助wr采纳,获得30
2秒前
正直的发卡完成签到,获得积分10
2秒前
甜甜玫瑰应助wr采纳,获得10
2秒前
泡沫没有冰完成签到 ,获得积分10
3秒前
bkagyin应助做科研的小丸子采纳,获得10
3秒前
4秒前
Xk16发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
7秒前
谨言完成签到 ,获得积分10
10秒前
zmy发布了新的文献求助10
11秒前
11秒前
打打应助犹豫的梦山采纳,获得10
11秒前
12秒前
xinanfeng发布了新的文献求助20
12秒前
诸葛翼德完成签到,获得积分10
14秒前
16秒前
zhazd发布了新的文献求助10
16秒前
fr0zen完成签到,获得积分10
17秒前
小吴完成签到,获得积分10
20秒前
21秒前
zzz完成签到 ,获得积分10
21秒前
思源应助含蓄含烟采纳,获得10
22秒前
葡萄成熟时完成签到,获得积分10
22秒前
22秒前
23秒前
搜集达人应助闹闹采纳,获得10
23秒前
万能图书馆应助马树成采纳,获得10
24秒前
zhazd完成签到,获得积分10
27秒前
27秒前
可爱的函函应助非非采纳,获得10
27秒前
小郭发布了新的文献求助10
28秒前
HYH发布了新的文献求助10
28秒前
ccc发布了新的文献求助20
30秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3050909
求助须知:如何正确求助?哪些是违规求助? 2708236
关于积分的说明 7412010
捐赠科研通 2352411
什么是DOI,文献DOI怎么找? 1245174
科研通“疑难数据库(出版商)”最低求助积分说明 605463
版权声明 595796