Modeling strength characteristics of basalt fiber reinforced concrete using multiple explainable machine learning with a graphical user interface

图形用户界面 玄武岩纤维 计算机科学 纤维 接口(物质) 玄武岩 复合材料 材料科学 地质学 并行计算 操作系统 地球化学 最大气泡压力法 气泡
作者
W.K.V.J.B. Kulasooriya,R.S.S. Ranasinghe,Udara Sachinthana Perera,P. Thisovithan,I.U. Ekanayake,D.P.P. Meddage
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1) 被引量:20
标识
DOI:10.1038/s41598-023-40513-x
摘要

This study investigated the importance of applying explainable artificial intelligence (XAI) on different machine learning (ML) models developed to predict the strength characteristics of basalt-fiber reinforced concrete (BFRC). Even though ML is widely adopted in strength prediction in concrete, the black-box nature of predictions hinders the interpretation of results. Among several attempts to overcome this limitation by using explainable AI, researchers have employed only a single explanation method. In this study, we used three tree-based ML models (Decision tree, Gradient Boosting tree, and Light Gradient Boosting Machine) to predict the mechanical strength characteristics (compressive strength, flexural strength, and tensile strength) of basal fiber reinforced concrete (BFRC). For the first time, we employed two explanation methods (Shapley additive explanations (SHAP) and local interpretable model-agnostic explanations (LIME)) to provide explanations for all models. These explainable methods reveal the underlying decision-making criteria of complex machine learning models, improving the end user's trust. The comparison highlights that tree-based models obtained good accuracy in predicting strength characteristics yet, their explanations were different either by the magnitude of feature importance or the order of importance. This disagreement pushes towards complicated decision-making based on ML predictions which further stresses (1) extending XAI-based research in concrete strength predictions, and (2) involving domain experts to evaluate XAI results. The study concludes with the development of a "user-friendly computer application" which enables quick strength prediction of basalt fiber reinforced concrete (BFRC).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
努力游游完成签到,获得积分10
刚刚
专注的玉米完成签到,获得积分10
刚刚
敏感的海雪关注了科研通微信公众号
2秒前
感动梦岚发布了新的文献求助10
2秒前
3秒前
5t5发布了新的文献求助10
4秒前
星辰大海应助多情如容采纳,获得10
4秒前
4秒前
summitekey发布了新的文献求助10
5秒前
zeng发布了新的文献求助10
5秒前
DAdump1ing完成签到,获得积分10
6秒前
lllkkk发布了新的文献求助10
7秒前
8秒前
贝卓飞完成签到,获得积分10
8秒前
8秒前
zhou默完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
10秒前
Akim应助lulu采纳,获得10
10秒前
10秒前
张浩洋发布了新的文献求助10
10秒前
斯文白梦完成签到,获得积分20
11秒前
11秒前
万能图书馆应助Tanxaio采纳,获得10
12秒前
小马甲应助sye采纳,获得10
12秒前
13秒前
科研通AI6应助长医德莱文采纳,获得10
13秒前
Foch发布了新的文献求助10
13秒前
摩根发布了新的文献求助10
14秒前
14秒前
14秒前
根号3发布了新的文献求助30
14秒前
lxl发布了新的文献求助10
14秒前
追寻荔枝发布了新的文献求助10
14秒前
王能行完成签到,获得积分10
15秒前
木木发布了新的文献求助10
15秒前
珊明治发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5070141
求助须知:如何正确求助?哪些是违规求助? 4291362
关于积分的说明 13370057
捐赠科研通 4111607
什么是DOI,文献DOI怎么找? 2251577
邀请新用户注册赠送积分活动 1256761
关于科研通互助平台的介绍 1189297