Boundary-Semantic Collaborative Guidance Network With Dual-Stream Feedback Mechanism for Salient Object Detection in Optical Remote Sensing Imagery

计算机科学 遥感 边界(拓扑) 目标检测 突出 对偶(语法数字) 人工智能 对象(语法) 机制(生物学) 模式识别(心理学) 计算机视觉 地质学 认识论 文学类 数学 哲学 数学分析 艺术
作者
Dejun Feng,Hongyu Chen,Suning Liu,Ziyang Liao,Xingyu Shen,Yakun Xie,Jun Zhu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:3
标识
DOI:10.1109/tgrs.2023.3332282
摘要

With the increasing application of deep learning in various domains, salient object detection in optical remote sensing images (ORSI-SOD) has attracted significant attention.However, most existing ORSI-SOD methods predominantly rely on local information from low-level features to infer salient boundary cues and supervise them using boundary ground truth, but fail to sufficiently optimize and protect the local information, and almost all approaches ignore the potential advantages offered by the last layer of the decoder to maintain the integrity of saliency maps.To address these issues, we propose a novel method named boundarysemantic collaborative guidance network (BSCGNet) with dualstream feedback mechanism.First, we propose a boundary protection calibration (BPC) module, which effectively reduces the loss of edge position information during forward propagation and suppresses noise in low-level features without relying on boundary ground truth.Second, based on the BPC module, a dual feature feedback complementary (DFFC) module is proposed, which aggregates boundary-semantic dual features and provides effective feedback to coordinate features across different layers, thereby enhancing cross-scale knowledge communication.Finally, to obtain more complete saliency maps, we consider the uniqueness of the last layer of the decoder for the first time and propose the adaptive feedback refinement (AFR) module, which further refines feature representation and eliminates differences between features through a unique feedback mechanism.Extensive experiments on three benchmark datasets demonstrate that BSCGNet exhibits distinct advantages in challenging scenarios and outperforms the 17 state-of-the-art (SOTA) approaches proposed in recent years.Codes and results have been released on GitHub: https://github.com/YUHsss/BSCGNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Philwen完成签到 ,获得积分10
刚刚
hhhh发布了新的文献求助10
刚刚
刚刚
jtj完成签到 ,获得积分20
刚刚
cocolu应助吖吖采纳,获得10
刚刚
AlvinCZY完成签到,获得积分10
1秒前
1秒前
1秒前
duanhuiyuan应助小程同学采纳,获得10
1秒前
1秒前
2秒前
森予发布了新的文献求助10
2秒前
3秒前
Lin应助陈陈陈采纳,获得10
4秒前
丰知然应助163.com采纳,获得10
4秒前
4秒前
在水一方应助俊逸的翅膀采纳,获得10
4秒前
丸子发布了新的文献求助10
4秒前
林秋沐完成签到 ,获得积分10
4秒前
4秒前
猪猪hero发布了新的文献求助10
5秒前
充电宝应助旺旺采纳,获得10
6秒前
6秒前
6秒前
北北斤完成签到 ,获得积分10
6秒前
6秒前
6秒前
7秒前
欧大大发布了新的文献求助30
7秒前
科研通AI2S应助醉熏的灵采纳,获得10
7秒前
最专业发布了新的文献求助10
7秒前
莉莉发布了新的文献求助10
8秒前
universe_hhy完成签到,获得积分10
9秒前
彭于晏应助hhhh采纳,获得10
9秒前
云歇雨住完成签到,获得积分10
10秒前
Michelle发布了新的文献求助10
11秒前
ZQZ发布了新的文献求助10
12秒前
12秒前
imxiaobing完成签到,获得积分10
13秒前
luo发布了新的文献求助10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454862
求助须知:如何正确求助?哪些是违规求助? 3050097
关于积分的说明 9020280
捐赠科研通 2738771
什么是DOI,文献DOI怎么找? 1502291
科研通“疑难数据库(出版商)”最低求助积分说明 694453
邀请新用户注册赠送积分活动 693159