已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Optimization of the profile and distribution of absorption material in sonic black holes

最优化问题 数学优化 宽带 二次方程 幂律 反射系数 声学 数学 物理 计算机科学 光学 几何学 统计
作者
Gerard Serra,Oriol Guasch,Marc Arnela,David Miralles
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:202: 110707-110707 被引量:12
标识
DOI:10.1016/j.ymssp.2023.110707
摘要

Sonic black holes (SBH) in duct terminations consist of a set of inner rings separated by cavities whose inner radii typically decrease according to a power-law profile. The combination of profile shape and wall impedance is such that, in an ideal situation, waves entering the SBH would slow down without reaching the end of the duct, resulting in a perfect anechoic termination. However, in practice this is not possible and the reflection coefficient, although small for a broadband frequency range, characterizes the performance of the SBH. In this paper, we pose several optimization problems in an attempt to improve the efficiency of conventional SBHs. First, we present a general cost function with constraints for the weighted reflection coefficient of a SBH, to be minimized for each particular problem to be addressed. We start by optimizing the order of conventional SBHs and then take a step forward by allowing a free design for the SBH profile with a monotonic condition, but not restricted to the standard power-law decay. These two optimization problems are solved by a derandomized evolutionary strategy (ES) with covariance matrix adaptation, which can deal with multi-objective optimization problems very efficiently. On the other hand, the performance of the SBH can be improved by filling its cavities with absorption material. Therefore, for a limiting number of filled cavities that must not be exceeded, we find what is the best absorption distribution for the linear and quadratic power-law SBHs, as well as for the SBH with optimal profile found in the previous optimization problem. Each individual cavity can be either empty or filled with absorption material. Since the derandomized ES strategy is not suitable for problems with binary solutions, genetic algorithms are used instead. Finally, we perform a simultaneous optimization of the SBH profile and the absorption distribution with a loop combination of the derandomized ES and genetic algorithms. An important aspect of this paper is that the cost function is not viewed as an immutable quantity that always provides the best result for the physical problem at hand. Although the latter is true from a mathematical perspective, we show the effects of varying the weights and constraints of the cost function on the solutions and how these can give clues to improve existing designs and find new ones.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
难难难发布了新的文献求助10
刚刚
2秒前
搜集达人应助茶暖采纳,获得10
4秒前
英俊的铭应助然大宝采纳,获得10
5秒前
sym522完成签到,获得积分10
7秒前
刻苦迎波发布了新的文献求助10
7秒前
蔡从安发布了新的文献求助10
7秒前
8秒前
灰色的乌完成签到,获得积分10
9秒前
10秒前
乐空思应助sym522采纳,获得30
11秒前
ding应助果果采纳,获得30
11秒前
14秒前
jjx1005完成签到 ,获得积分10
14秒前
李爱国应助不饱和环二酮采纳,获得10
15秒前
英姑应助he采纳,获得10
15秒前
Yjn发布了新的文献求助10
15秒前
安详的海风完成签到,获得积分10
16秒前
iwsaml完成签到 ,获得积分10
18秒前
包容的睫毛膏完成签到,获得积分10
20秒前
传奇3应助难难难采纳,获得10
20秒前
浮游应助蔡从安采纳,获得10
24秒前
十三发布了新的文献求助10
25秒前
好哥哥发布了新的文献求助10
26秒前
我是125完成签到,获得积分10
28秒前
源源完成签到,获得积分10
29秒前
31秒前
桐桐应助一口袋的风采纳,获得50
32秒前
pzh798419969完成签到,获得积分10
32秒前
SUP编外人员完成签到,获得积分10
33秒前
SciGPT应助Niki采纳,获得10
33秒前
33秒前
乐乐应助我是张铁柱·采纳,获得10
34秒前
jinger发布了新的文献求助10
35秒前
36秒前
欢欢发布了新的文献求助10
36秒前
38秒前
40秒前
领导范儿应助笠原May采纳,获得10
42秒前
眼睛大世开完成签到 ,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633998
求助须知:如何正确求助?哪些是违规求助? 4729911
关于积分的说明 14987292
捐赠科研通 4791783
什么是DOI,文献DOI怎么找? 2559051
邀请新用户注册赠送积分活动 1519536
关于科研通互助平台的介绍 1479718