已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Optimization of the profile and distribution of absorption material in sonic black holes

最优化问题 数学优化 宽带 二次方程 幂律 反射系数 声学 数学 物理 计算机科学 光学 几何学 统计
作者
Gerard Serra,Oriol Guasch,Marc Arnela,David Miralles
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:202: 110707-110707 被引量:12
标识
DOI:10.1016/j.ymssp.2023.110707
摘要

Sonic black holes (SBH) in duct terminations consist of a set of inner rings separated by cavities whose inner radii typically decrease according to a power-law profile. The combination of profile shape and wall impedance is such that, in an ideal situation, waves entering the SBH would slow down without reaching the end of the duct, resulting in a perfect anechoic termination. However, in practice this is not possible and the reflection coefficient, although small for a broadband frequency range, characterizes the performance of the SBH. In this paper, we pose several optimization problems in an attempt to improve the efficiency of conventional SBHs. First, we present a general cost function with constraints for the weighted reflection coefficient of a SBH, to be minimized for each particular problem to be addressed. We start by optimizing the order of conventional SBHs and then take a step forward by allowing a free design for the SBH profile with a monotonic condition, but not restricted to the standard power-law decay. These two optimization problems are solved by a derandomized evolutionary strategy (ES) with covariance matrix adaptation, which can deal with multi-objective optimization problems very efficiently. On the other hand, the performance of the SBH can be improved by filling its cavities with absorption material. Therefore, for a limiting number of filled cavities that must not be exceeded, we find what is the best absorption distribution for the linear and quadratic power-law SBHs, as well as for the SBH with optimal profile found in the previous optimization problem. Each individual cavity can be either empty or filled with absorption material. Since the derandomized ES strategy is not suitable for problems with binary solutions, genetic algorithms are used instead. Finally, we perform a simultaneous optimization of the SBH profile and the absorption distribution with a loop combination of the derandomized ES and genetic algorithms. An important aspect of this paper is that the cost function is not viewed as an immutable quantity that always provides the best result for the physical problem at hand. Although the latter is true from a mathematical perspective, we show the effects of varying the weights and constraints of the cost function on the solutions and how these can give clues to improve existing designs and find new ones.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
yayoi发布了新的文献求助10
刚刚
2秒前
月见完成签到 ,获得积分10
6秒前
panpan发布了新的文献求助10
6秒前
taotao完成签到,获得积分10
8秒前
小小小白完成签到,获得积分10
8秒前
wanci应助现代尔芙采纳,获得10
10秒前
Wenqi完成签到 ,获得积分10
11秒前
Nomb1发布了新的文献求助10
12秒前
科研通AI2S应助liyanping采纳,获得10
13秒前
ZM完成签到 ,获得积分10
15秒前
姆姆没买完成签到 ,获得积分0
17秒前
星辰大海应助Nomb1采纳,获得10
18秒前
大模型应助孙j采纳,获得20
18秒前
22秒前
sakyadamo发布了新的文献求助10
27秒前
29秒前
kshuizhuyu完成签到,获得积分10
36秒前
LMX完成签到 ,获得积分10
36秒前
失眠的新之完成签到,获得积分10
36秒前
hepotosis完成签到 ,获得积分10
37秒前
共享精神应助笑点低人英采纳,获得10
37秒前
赘婿应助雪花采纳,获得10
42秒前
47秒前
bobo完成签到,获得积分10
48秒前
51秒前
51秒前
碧蓝的以云完成签到,获得积分10
52秒前
哈基咪完成签到 ,获得积分10
53秒前
53秒前
57秒前
57秒前
桃井尤川完成签到,获得积分10
57秒前
笑点低完成签到 ,获得积分10
57秒前
1分钟前
cc完成签到 ,获得积分10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502531
求助须知:如何正确求助?哪些是违规求助? 4598345
关于积分的说明 14463856
捐赠科研通 4531936
什么是DOI,文献DOI怎么找? 2483722
邀请新用户注册赠送积分活动 1466943
关于科研通互助平台的介绍 1439576