Low-latency Scheduling Approach for Dependent Tasks in MEC-enabled 5G Vehicular Networks

计算机科学 调度(生产过程) 分布式计算 相互依存 边缘计算 计算机网络 GSM演进的增强数据速率 人工智能 运营管理 政治学 法学 经济
作者
Zhiying Wang,Gang Sun,H. M. Su,Hongfang Yu,Bo Lei,Mohsen Guizani
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/jiot.2023.3309940
摘要

With the development of the Internet of Vehicles (IoV), Multi-Access Edge Computing (MEC) technology places computing resources closer to users at edge nodes, enabling faster, more reliable and secure computing services. In the MEC-enabled IoV networks, task offloading scheduling, as an effective method to alleviate the computational burden on vehicles, is gaining increasing attention. However, with the intelligent and networked development of vehicles, the complex data dependency between in-vehicle tasks brings challenges to offloading scheduling. In contrast to many existing methods that solely address individual tasks, there is a growing need to tackle interrelated tasks within the IoV framework. This includes tasks like processing vehicle sensor data, gathering and analyzing road condition information, facilitating collaborative decision-making among vehicles and optimizing traffic signal systems. Our objective is to address the broader challenge of offloading dependent tasks, as this closely aligns with real-world scenes and requirements. In this paper, we propose a Priority-based Task Scheduling Algorithm (PBTSA) to minimize processing delay when the tasks are interdependent. PBTSA proposes a method that can better measure the data transmission and calculation delay of the IoV networks. We first model dependent tasks as a Directed Acyclic Graph (DAG) and then use the Reverse Breadth-First Search (RBFS) algorithm to generate the priority of each subtask, and finally according to the priority with low complexity to offload subtasks greedily to minimize task processing delay. We compare the PBTSA with the other two existing algorithms through simulations. The results show that the PBTSA can effectively reduce the task processing delay can reach close to 10%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
坚强的樱发布了新的文献求助10
刚刚
刚刚
求解限发布了新的文献求助160
刚刚
1秒前
白宝宝北北白应助XIN采纳,获得10
1秒前
wenjian发布了新的文献求助10
1秒前
2秒前
华仔应助jy采纳,获得10
2秒前
hoongyan完成签到 ,获得积分10
2秒前
Ava应助aoxiangcaizi12采纳,获得10
4秒前
Amai完成签到,获得积分10
4秒前
5秒前
九川发布了新的文献求助10
6秒前
风的季节发布了新的文献求助10
6秒前
可耐的乐荷完成签到,获得积分10
7秒前
WEILAI完成签到,获得积分10
7秒前
my发布了新的文献求助10
7秒前
wenjian完成签到,获得积分10
8秒前
8秒前
Accept2024完成签到,获得积分10
9秒前
万能图书馆应助笑笑采纳,获得10
9秒前
伊丽莎白居易完成签到,获得积分10
10秒前
鳗鱼静珊发布了新的文献求助10
10秒前
yuyiyi完成签到,获得积分10
11秒前
无花果应助胖豆采纳,获得10
12秒前
通~发布了新的文献求助10
12秒前
cc发布了新的文献求助10
13秒前
14秒前
MILL发布了新的文献求助10
14秒前
月光入梦完成签到 ,获得积分10
15秒前
HC完成签到,获得积分10
16秒前
琪琪发布了新的文献求助10
16秒前
17秒前
淡定的思松应助风的季节采纳,获得10
18秒前
所所应助mm采纳,获得10
18秒前
19秒前
荒年完成签到,获得积分10
19秒前
魁梧的曼凡完成签到,获得积分10
19秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794