Low-latency Scheduling Approach for Dependent Tasks in MEC-enabled 5G Vehicular Networks

计算机科学 调度(生产过程) 分布式计算 相互依存 边缘计算 计算机网络 GSM演进的增强数据速率 人工智能 运营管理 政治学 法学 经济
作者
Zhiying Wang,Gang Sun,H. M. Su,Hongfang Yu,Bo Lei,Mohsen Guizani
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/jiot.2023.3309940
摘要

With the development of the Internet of Vehicles (IoV), Multi-Access Edge Computing (MEC) technology places computing resources closer to users at edge nodes, enabling faster, more reliable and secure computing services. In the MEC-enabled IoV networks, task offloading scheduling, as an effective method to alleviate the computational burden on vehicles, is gaining increasing attention. However, with the intelligent and networked development of vehicles, the complex data dependency between in-vehicle tasks brings challenges to offloading scheduling. In contrast to many existing methods that solely address individual tasks, there is a growing need to tackle interrelated tasks within the IoV framework. This includes tasks like processing vehicle sensor data, gathering and analyzing road condition information, facilitating collaborative decision-making among vehicles and optimizing traffic signal systems. Our objective is to address the broader challenge of offloading dependent tasks, as this closely aligns with real-world scenes and requirements. In this paper, we propose a Priority-based Task Scheduling Algorithm (PBTSA) to minimize processing delay when the tasks are interdependent. PBTSA proposes a method that can better measure the data transmission and calculation delay of the IoV networks. We first model dependent tasks as a Directed Acyclic Graph (DAG) and then use the Reverse Breadth-First Search (RBFS) algorithm to generate the priority of each subtask, and finally according to the priority with low complexity to offload subtasks greedily to minimize task processing delay. We compare the PBTSA with the other two existing algorithms through simulations. The results show that the PBTSA can effectively reduce the task processing delay can reach close to 10%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助leinuo077采纳,获得10
刚刚
Joyi发布了新的文献求助10
刚刚
刚刚
赘婿应助钱俊采纳,获得10
1秒前
烟花应助木瓜木瓜采纳,获得10
1秒前
1秒前
1秒前
小高发布了新的文献求助10
2秒前
小杨完成签到,获得积分10
2秒前
黄宇阳发布了新的文献求助10
2秒前
1234发布了新的文献求助10
3秒前
安荷发布了新的文献求助10
3秒前
乾坤发布了新的文献求助10
3秒前
4秒前
DDDDD发布了新的文献求助10
4秒前
今朝发布了新的文献求助10
5秒前
666666666666666完成签到 ,获得积分10
6秒前
8秒前
8秒前
purplemoon发布了新的文献求助10
8秒前
CipherSage应助小吴同志采纳,获得10
9秒前
丘丘完成签到,获得积分10
10秒前
10秒前
11秒前
不爱胡椒发布了新的文献求助20
11秒前
Ava应助wtf采纳,获得10
11秒前
朱妮妮完成签到,获得积分10
11秒前
tomjim100完成签到,获得积分10
12秒前
小马甲应助小吴同志采纳,获得10
12秒前
花椒苦啊完成签到,获得积分10
12秒前
混子完成签到,获得积分10
13秒前
畅快若剑完成签到,获得积分10
13秒前
14秒前
顺利的鱼完成签到,获得积分10
15秒前
科研通AI2S应助周同学采纳,获得10
15秒前
wanci应助liangliang采纳,获得10
15秒前
木瓜木瓜发布了新的文献求助10
15秒前
万能图书馆应助高大怀梦采纳,获得30
16秒前
treasure完成签到,获得积分10
17秒前
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148410
求助须知:如何正确求助?哪些是违规求助? 2799502
关于积分的说明 7835226
捐赠科研通 2456813
什么是DOI,文献DOI怎么找? 1307424
科研通“疑难数据库(出版商)”最低求助积分说明 628189
版权声明 601655