Materials characterization: Can artificial intelligence be used to address reproducibility challenges?

表征(材料科学) 计算机科学 工作流程 数据科学 人工智能 代表(政治) 接口(物质) 鉴定(生物学) 机器学习 纳米技术 材料科学 植物 气泡 数据库 最大气泡压力法 政治 并行计算 政治学 法学 生物
作者
Miu Lun Lau,Abraham Burleigh,Jeff Terry,Min Long
出处
期刊:Journal of vacuum science & technology [American Institute of Physics]
卷期号:41 (6) 被引量:7
标识
DOI:10.1116/6.0002809
摘要

Material characterization techniques are widely used to characterize the physical and chemical properties of materials at the nanoscale and, thus, play central roles in material scientific discoveries. However, the large and complex datasets generated by these techniques often require significant human effort to interpret and extract meaningful physicochemical insights. Artificial intelligence (AI) techniques such as machine learning (ML) have the potential to improve the efficiency and accuracy of surface analysis by automating data analysis and interpretation. In this perspective paper, we review the current role of AI in surface analysis and discuss its future potential to accelerate discoveries in surface science, materials science, and interface science. We highlight several applications where AI has already been used to analyze surface analysis data, including the identification of crystal structures from XRD data, analysis of XPS spectra for surface composition, and the interpretation of TEM and SEM images for particle morphology and size. We also discuss the challenges and opportunities associated with the integration of AI into surface analysis workflows. These include the need for large and diverse datasets for training ML models, the importance of feature selection and representation, and the potential for ML to enable new insights and discoveries by identifying patterns and relationships in complex datasets. Most importantly, AI analyzed data must not just find the best mathematical description of the data, but it must find the most physical and chemically meaningful results. In addition, the need for reproducibility in scientific research has become increasingly important in recent years. The advancement of AI, including both conventional and the increasing popular deep learning, is showing promise in addressing those challenges by enabling the execution and verification of scientific progress. By training models on large experimental datasets and providing automated analysis and data interpretation, AI can help to ensure that scientific results are reproducible and reliable. Although integration of knowledge and AI models must be considered for the transparency and interpretability of models, the incorporation of AI into the data collection and processing workflow will significantly enhance the efficiency and accuracy of various surface analysis techniques and deepen our understanding at an accelerated pace.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助Adzuki0812采纳,获得10
1秒前
2秒前
坦率的媚颜完成签到,获得积分10
3秒前
周周发布了新的文献求助20
3秒前
爆米花完成签到,获得积分10
3秒前
lsybf发布了新的文献求助10
3秒前
成就完成签到,获得积分10
4秒前
ster223发布了新的文献求助10
4秒前
xixi发布了新的文献求助10
7秒前
7秒前
科研通AI6应助xxxxxxxxx采纳,获得10
8秒前
8秒前
风清扬发布了新的文献求助10
8秒前
初见秋风完成签到,获得积分10
9秒前
科研笨猪完成签到,获得积分20
10秒前
de铭完成签到,获得积分10
10秒前
11秒前
12秒前
13秒前
13秒前
小螃蟹完成签到 ,获得积分10
13秒前
学术小白完成签到,获得积分10
13秒前
bkagyin应助木子采纳,获得10
13秒前
彭日晓完成签到,获得积分10
14秒前
周周发布了新的文献求助30
15秒前
Hoowen完成签到,获得积分20
16秒前
田様应助俊俊采纳,获得10
17秒前
bgerivers发布了新的文献求助10
17秒前
多云完成签到,获得积分10
17秒前
17秒前
17秒前
17秒前
17秒前
18秒前
sun完成签到 ,获得积分10
18秒前
CipherSage应助duan采纳,获得10
18秒前
温暖伟祺完成签到,获得积分10
18秒前
阿辉发布了新的文献求助10
21秒前
lsybf完成签到,获得积分10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5271518
求助须知:如何正确求助?哪些是违规求助? 4429192
关于积分的说明 13787815
捐赠科研通 4307460
什么是DOI,文献DOI怎么找? 2363567
邀请新用户注册赠送积分活动 1359231
关于科研通互助平台的介绍 1322167