亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Materials characterization: Can artificial intelligence be used to address reproducibility challenges?

表征(材料科学) 计算机科学 工作流程 数据科学 人工智能 代表(政治) 接口(物质) 鉴定(生物学) 机器学习 纳米技术 材料科学 植物 气泡 数据库 最大气泡压力法 政治 并行计算 政治学 法学 生物
作者
Miu Lun Lau,Abraham Burleigh,Jeff Terry,Min Long
出处
期刊:Journal of vacuum science & technology [American Institute of Physics]
卷期号:41 (6) 被引量:7
标识
DOI:10.1116/6.0002809
摘要

Material characterization techniques are widely used to characterize the physical and chemical properties of materials at the nanoscale and, thus, play central roles in material scientific discoveries. However, the large and complex datasets generated by these techniques often require significant human effort to interpret and extract meaningful physicochemical insights. Artificial intelligence (AI) techniques such as machine learning (ML) have the potential to improve the efficiency and accuracy of surface analysis by automating data analysis and interpretation. In this perspective paper, we review the current role of AI in surface analysis and discuss its future potential to accelerate discoveries in surface science, materials science, and interface science. We highlight several applications where AI has already been used to analyze surface analysis data, including the identification of crystal structures from XRD data, analysis of XPS spectra for surface composition, and the interpretation of TEM and SEM images for particle morphology and size. We also discuss the challenges and opportunities associated with the integration of AI into surface analysis workflows. These include the need for large and diverse datasets for training ML models, the importance of feature selection and representation, and the potential for ML to enable new insights and discoveries by identifying patterns and relationships in complex datasets. Most importantly, AI analyzed data must not just find the best mathematical description of the data, but it must find the most physical and chemically meaningful results. In addition, the need for reproducibility in scientific research has become increasingly important in recent years. The advancement of AI, including both conventional and the increasing popular deep learning, is showing promise in addressing those challenges by enabling the execution and verification of scientific progress. By training models on large experimental datasets and providing automated analysis and data interpretation, AI can help to ensure that scientific results are reproducible and reliable. Although integration of knowledge and AI models must be considered for the transparency and interpretability of models, the incorporation of AI into the data collection and processing workflow will significantly enhance the efficiency and accuracy of various surface analysis techniques and deepen our understanding at an accelerated pace.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
上官若男应助爱听歌笑寒采纳,获得10
4秒前
jimmy_bytheway完成签到,获得积分0
8秒前
9秒前
13秒前
容若发布了新的文献求助10
13秒前
15秒前
重庆森林发布了新的文献求助10
19秒前
容若发布了新的文献求助10
31秒前
重庆森林完成签到,获得积分20
38秒前
jinyue完成签到 ,获得积分10
49秒前
huxuehong完成签到 ,获得积分10
56秒前
三金发布了新的文献求助200
57秒前
58秒前
怕孤独的白凡完成签到 ,获得积分10
58秒前
JamesPei应助爱听歌笑寒采纳,获得10
1分钟前
量子星尘发布了新的文献求助20
1分钟前
1分钟前
1分钟前
1分钟前
激情的冷风完成签到,获得积分20
1分钟前
Docgyj完成签到 ,获得积分0
1分钟前
1分钟前
容若发布了新的文献求助10
1分钟前
搜集达人应助陶1122采纳,获得10
1分钟前
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
2分钟前
小马甲应助爱听歌笑寒采纳,获得10
2分钟前
爱听歌笑寒完成签到,获得积分10
2分钟前
2分钟前
容若发布了新的文献求助10
2分钟前
2分钟前
深情安青应助容若采纳,获得10
2分钟前
2分钟前
路脚下完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
华仔应助LukeLion采纳,获得10
3分钟前
容若发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611282
求助须知:如何正确求助?哪些是违规求助? 4016845
关于积分的说明 12435757
捐赠科研通 3698687
什么是DOI,文献DOI怎么找? 2039615
邀请新用户注册赠送积分活动 1072446
科研通“疑难数据库(出版商)”最低求助积分说明 956127