Materials characterization: Can artificial intelligence be used to address reproducibility challenges?

表征(材料科学) 计算机科学 工作流程 数据科学 人工智能 代表(政治) 接口(物质) 鉴定(生物学) 机器学习 纳米技术 材料科学 气泡 政治学 法学 并行计算 植物 最大气泡压力法 政治 生物 数据库
作者
Miu Lun Lau,Abraham Burleigh,Jeff Terry,Min Long
出处
期刊:Journal of vacuum science & technology [American Vacuum Society]
卷期号:41 (6) 被引量:4
标识
DOI:10.1116/6.0002809
摘要

Material characterization techniques are widely used to characterize the physical and chemical properties of materials at the nanoscale and, thus, play central roles in material scientific discoveries. However, the large and complex datasets generated by these techniques often require significant human effort to interpret and extract meaningful physicochemical insights. Artificial intelligence (AI) techniques such as machine learning (ML) have the potential to improve the efficiency and accuracy of surface analysis by automating data analysis and interpretation. In this perspective paper, we review the current role of AI in surface analysis and discuss its future potential to accelerate discoveries in surface science, materials science, and interface science. We highlight several applications where AI has already been used to analyze surface analysis data, including the identification of crystal structures from XRD data, analysis of XPS spectra for surface composition, and the interpretation of TEM and SEM images for particle morphology and size. We also discuss the challenges and opportunities associated with the integration of AI into surface analysis workflows. These include the need for large and diverse datasets for training ML models, the importance of feature selection and representation, and the potential for ML to enable new insights and discoveries by identifying patterns and relationships in complex datasets. Most importantly, AI analyzed data must not just find the best mathematical description of the data, but it must find the most physical and chemically meaningful results. In addition, the need for reproducibility in scientific research has become increasingly important in recent years. The advancement of AI, including both conventional and the increasing popular deep learning, is showing promise in addressing those challenges by enabling the execution and verification of scientific progress. By training models on large experimental datasets and providing automated analysis and data interpretation, AI can help to ensure that scientific results are reproducible and reliable. Although integration of knowledge and AI models must be considered for the transparency and interpretability of models, the incorporation of AI into the data collection and processing workflow will significantly enhance the efficiency and accuracy of various surface analysis techniques and deepen our understanding at an accelerated pace.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaohongmao完成签到,获得积分10
2秒前
Polymer72应助科研通管家采纳,获得20
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
xiongqi完成签到 ,获得积分10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
4秒前
思源应助科研通管家采纳,获得10
4秒前
4秒前
高高的天亦完成签到 ,获得积分10
5秒前
WittingGU完成签到,获得积分0
7秒前
刘汉淼完成签到,获得积分10
8秒前
10秒前
科研人完成签到 ,获得积分10
15秒前
刻苦的小虾米完成签到 ,获得积分10
16秒前
jyjy关注了科研通微信公众号
17秒前
18秒前
神奇的种子完成签到,获得积分10
25秒前
山丘完成签到,获得积分10
25秒前
26秒前
29秒前
29秒前
11号迪西馅饼完成签到,获得积分10
29秒前
30秒前
怡然猎豹完成签到,获得积分10
31秒前
33秒前
阿尼完成签到 ,获得积分10
36秒前
37秒前
溜了溜了完成签到,获得积分10
41秒前
guozizi完成签到,获得积分10
44秒前
jixuchance完成签到,获得积分10
44秒前
叽叽哒哒完成签到 ,获得积分10
45秒前
Suraim完成签到,获得积分10
46秒前
yy家的小哥哥完成签到,获得积分10
47秒前
尽平梅愿完成签到,获得积分10
48秒前
乐乐乐乐乐乐完成签到,获得积分10
48秒前
南城花开完成签到,获得积分10
49秒前
孤海未蓝完成签到,获得积分10
51秒前
feimengxia完成签到 ,获得积分10
51秒前
51秒前
fuguier发布了新的文献求助10
52秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339197
求助须知:如何正确求助?哪些是违规求助? 2967064
关于积分的说明 8628183
捐赠科研通 2646548
什么是DOI,文献DOI怎么找? 1449297
科研通“疑难数据库(出版商)”最低求助积分说明 671343
邀请新用户注册赠送积分活动 660180