Materials characterization: Can artificial intelligence be used to address reproducibility challenges?

表征(材料科学) 计算机科学 工作流程 数据科学 人工智能 代表(政治) 接口(物质) 鉴定(生物学) 机器学习 纳米技术 材料科学 植物 气泡 数据库 最大气泡压力法 政治 并行计算 政治学 法学 生物
作者
Miu Lun Lau,Abraham Burleigh,Jeff Terry,Min Long
出处
期刊:Journal of vacuum science & technology [American Institute of Physics]
卷期号:41 (6) 被引量:4
标识
DOI:10.1116/6.0002809
摘要

Material characterization techniques are widely used to characterize the physical and chemical properties of materials at the nanoscale and, thus, play central roles in material scientific discoveries. However, the large and complex datasets generated by these techniques often require significant human effort to interpret and extract meaningful physicochemical insights. Artificial intelligence (AI) techniques such as machine learning (ML) have the potential to improve the efficiency and accuracy of surface analysis by automating data analysis and interpretation. In this perspective paper, we review the current role of AI in surface analysis and discuss its future potential to accelerate discoveries in surface science, materials science, and interface science. We highlight several applications where AI has already been used to analyze surface analysis data, including the identification of crystal structures from XRD data, analysis of XPS spectra for surface composition, and the interpretation of TEM and SEM images for particle morphology and size. We also discuss the challenges and opportunities associated with the integration of AI into surface analysis workflows. These include the need for large and diverse datasets for training ML models, the importance of feature selection and representation, and the potential for ML to enable new insights and discoveries by identifying patterns and relationships in complex datasets. Most importantly, AI analyzed data must not just find the best mathematical description of the data, but it must find the most physical and chemically meaningful results. In addition, the need for reproducibility in scientific research has become increasingly important in recent years. The advancement of AI, including both conventional and the increasing popular deep learning, is showing promise in addressing those challenges by enabling the execution and verification of scientific progress. By training models on large experimental datasets and providing automated analysis and data interpretation, AI can help to ensure that scientific results are reproducible and reliable. Although integration of knowledge and AI models must be considered for the transparency and interpretability of models, the incorporation of AI into the data collection and processing workflow will significantly enhance the efficiency and accuracy of various surface analysis techniques and deepen our understanding at an accelerated pace.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
称心的夏彤完成签到,获得积分10
刚刚
虚拟的日记本完成签到,获得积分10
1秒前
向雨竹发布了新的文献求助10
1秒前
1秒前
小二郎应助呆萌的世德采纳,获得10
1秒前
千枫茂榕发布了新的文献求助10
1秒前
别闹闹完成签到 ,获得积分10
1秒前
谷雨完成签到 ,获得积分10
2秒前
Joan_89完成签到,获得积分20
2秒前
平淡的沛儿完成签到,获得积分10
3秒前
3秒前
爱笑桐完成签到 ,获得积分10
3秒前
Akim应助大冬瓜采纳,获得10
3秒前
5秒前
panda完成签到,获得积分10
5秒前
6秒前
李一一发布了新的文献求助10
6秒前
忆修完成签到,获得积分10
6秒前
joejo1124完成签到 ,获得积分10
6秒前
搜集达人应助yyyyyge采纳,获得10
6秒前
米里迷路完成签到 ,获得积分10
7秒前
HonamC完成签到,获得积分10
7秒前
7秒前
Lucien发布了新的文献求助10
7秒前
莓烦恼完成签到 ,获得积分10
7秒前
凉小远发布了新的文献求助10
8秒前
8秒前
顾矜应助从别后忆相逢采纳,获得10
9秒前
xiaoan发布了新的文献求助10
9秒前
10秒前
11秒前
虚拟的凌旋完成签到 ,获得积分10
12秒前
刘晓丹发布了新的文献求助10
12秒前
12秒前
桐桐应助跳跃保温杯采纳,获得10
13秒前
小蘑菇应助DingJJ采纳,获得10
13秒前
知行合一发布了新的文献求助10
13秒前
drsquall完成签到,获得积分10
13秒前
13秒前
huilihub完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950754
求助须知:如何正确求助?哪些是违规求助? 3496198
关于积分的说明 11080706
捐赠科研通 3226588
什么是DOI,文献DOI怎么找? 1783939
邀请新用户注册赠送积分活动 867955
科研通“疑难数据库(出版商)”最低求助积分说明 800993