Materials characterization: Can artificial intelligence be used to address reproducibility challenges?

表征(材料科学) 计算机科学 工作流程 数据科学 人工智能 代表(政治) 接口(物质) 鉴定(生物学) 机器学习 纳米技术 材料科学 植物 气泡 数据库 最大气泡压力法 政治 并行计算 政治学 法学 生物
作者
Miu Lun Lau,Abraham Burleigh,Jeff Terry,Min Long
出处
期刊:Journal of vacuum science & technology [American Vacuum Society]
卷期号:41 (6) 被引量:4
标识
DOI:10.1116/6.0002809
摘要

Material characterization techniques are widely used to characterize the physical and chemical properties of materials at the nanoscale and, thus, play central roles in material scientific discoveries. However, the large and complex datasets generated by these techniques often require significant human effort to interpret and extract meaningful physicochemical insights. Artificial intelligence (AI) techniques such as machine learning (ML) have the potential to improve the efficiency and accuracy of surface analysis by automating data analysis and interpretation. In this perspective paper, we review the current role of AI in surface analysis and discuss its future potential to accelerate discoveries in surface science, materials science, and interface science. We highlight several applications where AI has already been used to analyze surface analysis data, including the identification of crystal structures from XRD data, analysis of XPS spectra for surface composition, and the interpretation of TEM and SEM images for particle morphology and size. We also discuss the challenges and opportunities associated with the integration of AI into surface analysis workflows. These include the need for large and diverse datasets for training ML models, the importance of feature selection and representation, and the potential for ML to enable new insights and discoveries by identifying patterns and relationships in complex datasets. Most importantly, AI analyzed data must not just find the best mathematical description of the data, but it must find the most physical and chemically meaningful results. In addition, the need for reproducibility in scientific research has become increasingly important in recent years. The advancement of AI, including both conventional and the increasing popular deep learning, is showing promise in addressing those challenges by enabling the execution and verification of scientific progress. By training models on large experimental datasets and providing automated analysis and data interpretation, AI can help to ensure that scientific results are reproducible and reliable. Although integration of knowledge and AI models must be considered for the transparency and interpretability of models, the incorporation of AI into the data collection and processing workflow will significantly enhance the efficiency and accuracy of various surface analysis techniques and deepen our understanding at an accelerated pace.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无奈的代珊完成签到 ,获得积分10
刚刚
1秒前
1秒前
搜集达人应助糊涂的小伙采纳,获得10
1秒前
mmd完成签到 ,获得积分10
2秒前
2秒前
Lily完成签到,获得积分10
3秒前
温言发布了新的文献求助10
4秒前
4秒前
Roy完成签到,获得积分10
4秒前
永远少年完成签到,获得积分10
6秒前
niu1发布了新的文献求助10
6秒前
7秒前
Danny完成签到,获得积分10
7秒前
Lsx完成签到 ,获得积分10
7秒前
又胖了发布了新的文献求助10
8秒前
8秒前
小小飞发布了新的文献求助20
9秒前
9秒前
9秒前
10秒前
wanci应助NorthWang采纳,获得10
10秒前
zhen完成签到,获得积分10
12秒前
ns发布了新的文献求助30
13秒前
14秒前
逐风完成签到,获得积分10
14秒前
无奈的酒窝完成签到,获得积分10
15秒前
15秒前
16秒前
blingbling发布了新的文献求助10
16秒前
今后应助SherlockLiu采纳,获得30
18秒前
daniel发布了新的文献求助10
18秒前
Jason应助温言采纳,获得20
19秒前
逐风发布了新的文献求助30
20秒前
hhzz发布了新的文献求助10
20秒前
日月轮回完成签到,获得积分10
21秒前
22秒前
Yimim发布了新的文献求助10
22秒前
小小li完成签到 ,获得积分10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808